Ø. Rist et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1177–1180
1179
Table 3
Table 4
Binding affinity and functional antagonism on hCRTH2 of 2-anilino-4-phenylthiaz-
oleacetic acids
Binding affinity and functional antagonism on hCRTH2 of 2-benzyl-4-phenylthiaz-
oleacetic acids
R1
R1
R3
R3
N
S
N
S
R2
R2
N
H
COOH
COOH
R3
R1
R2
R3
IC50 Binda
(lM)
IC50 BRETb
(lM)
No.
R1
R2
IC50 Binda
(lM)
IC50 BRETb
(lM)
No.
6a
6b
6c
6d
6e
6f
6g
6h
6i
6j
6k
6l
6m
6n
6o
6p
H
H
H
H
H
H
Cl
H
Cl
OCH3
H
H
F
F
F
Cl
F
F
0.18
4.1
4c
4d
4e
4f
4g
4h
4i
4j
4k
4l
4m
4n
4o
4p
4q
4r
4s
4t
4u
4v
4w
H
H
H
H
H
H
H
H
H
H
H
H
H
OCH3
OCH3
OCH3
OCH3
H
H
H
H
H
H
H
H
F
H
F
Cl
OCH3
Ph
F
0.35
0.65
0.10
1.9
0.66
1.5
1.5
1.3
1.3
2.4
1.2
2.1
0.73
1.9
Cl
Cl
Cl
CH3
OCH3
H
H
H
H
H
0.088
0.050
0.36
0.25
0.33
0.14
0.70
0.024
0.041
0.17
0.58
0.22
0.85
1.8
m-OCH3
H
Br
Ph
Ph
(p-CN)Ph
(m-CN)Ph
(p-OCH3)Ph
(m-OCH3)Ph
(o-OCH3)Ph
(m-OCF3)Ph
3.8
0.18c
>100
0.37
0.51
0.19c
>100
0.27
0.39
>100
>100
Cl
0.45
0.31
0.049
0.96
0.94
0.70
1.2
0.75
0.94
0.084
0.089
0.21
0.13
0.22
0.094
Ph
OPh
F
Ph
Cl
Cl
Cl
H
OPh
OPh
OPh
OPh
Br
H
0.48
1.9
Cl
Cl
CF3
iPr
Me
OCH3
H
F
H
H
3.8c
1.1
H
H
H
H
0.34
F
F
F
F
0.072
0.040
0.17
16
0.56
1.5
0.35
0.54
>100
>100
0.37
0.26c
H
0.16
O
6q
H
F
0.024
1.5
O
Cl
6r
6s
6t
H
Cl
OPh
H
2-Naphthyl
Cl
OPh
Cl
0.16
0.0037
0.041
>100
0.066
0.57
2-Naphthyl
2-Naphthyl
OPh
a
c
b
and as in Table 2.
Compounds having 20–30% antagonistic efficacies.
a
c
b
and as in Table 2.
Compounds having about 30% antagonistic efficacies.
no halogen substituent was present in the ortho position (4t, 4u)
which led to loss in functional antagonistic activity. By annelating
the eastern phenyl ring to a naphthyl substituent a high functional
antagonistic potency was achieved with 4v, whereas the very lipo-
philic 4w only behaved as a weak partial antagonist.
In summary, we described the structure–activity relationships
of a series of arylated thiazoleacetic acids derived from hits ob-
tained after in silico screening and their progression to potent
and selective compounds of potential use as anti-inflammatory
agents.
Subsequently, a larger set of analogous compounds 6a–6t hav-
ing the anilinic nitrogen replaced with a methylene linker was syn-
thesized according to Scheme 1 (Table 4). The mono and dichloro
compounds 6a–6c indicate that most potency enhancement is
delivered by the eastern para chloro group. However, introduction
of a western methoxy group reduces this enhancement (6d vs 6b
and 6c). Methyl (6e) or methoxy (6f) in the eastern para position
gives no improvement, which also is true for a fluoro substituent
in the western ring (6g, 6h). However, activity is gained when a
phenyl group is introduced in the ortho position (6i, 6j) (Table 4).
Additional functionalisations were investigated on this motif as
illustrated with the biphenyl derivatives 6k–6q carrying less lipo-
philic substituents to explore if this could be done with retained
potency. The nitrile derivatives 6k an 6l had poor functional activ-
ity. The para and meta methoxy (6m, 6n) and the methylenedioxy
(6q) derivatives had potencies comparable to the parent 6i
whereas the ortho compound 6o had inferior functional activity.
A trifluoromethoxy group in meta position was also less active than
the corresponding methoxy derivative (cf. 6p and 6n). The ortho
biphenyl ether 6r is also functionally inactive in contrast to the
corresponding biphenyl compound 6j. By bringing the additional
phenyl system even closer (2-naphthyl 6t) potency and functional
activity is regained. Notably, a phenoxy group in the western ring
(6s) gives rise to the most potent compound of these series exhib-
iting single digit binding affinity to the CRTH2 receptor (3.7 nM
n = 6). It displays full functional antagonistic effect at 66 nM
(n = 2) in BRET and 12 nM (n = 6) in a cAMP assay. Furthermore,
Acknowledgements
The authors thank Stina Hansen, Joan Gredal, Rokhsana Ander-
sen, Ann Christensen, and Helle Zancho Andresen, for excellent
technical assistance.
References and notes
1. Reviews with relevant references therein: (a) Pettipher, R. Br. J. Pharmacol.
2008, 153, S191; (b) Pettipher, R.; Hansel, T. T.; Armer, R. Nat. Rev. Drug Disc.
2007, 6, 313; (c) Kostenis, E.; Ulven, T. Trends Mol. Med. 2006, 12, 148; (d)
Herlong, J. L.; Scott, T. R. Immunol. Lett. 2006, 102, 121; (e) Moore, M. L.; Peebles,
R. S., Jr. J. Allergy Clin. Immunol. 2006, 117, 1036.
2. (a) Nagata, K.; Hirai, H.; Tanaka, K.; Ogawa, K.; Aso, T.; Sugamura, K.;
Nakamura, M.; Takano, S. FEBS Lett. 1999, 459, 195; (b) Hirai, H.; Tanaka, K.;
Yoshie, O.; Ogawa, K.; Kenmotsu, K.; Takamori, Y.; Ichimasa, M.; Sugamura, K.;
Nakamura, M.; Takano, S.; Nagata, K. J. Exp. Med. 2001, 193, 255.
3. Bohm, E.; Sturm, G. J.; Weiglhofer, I.; Sandig, H.; Shichijo, M.; McNamee, A.;
Pease, J. E.; Kollroser, M.; Peskar, B. A.; Heinemann, A. J. Biol. Chem. 2004, 279,
7663–7670.
4. Xue, L.; Gyles, S. L.; Wettey, F. R.; Gazi, L.; Townsend, E.; Hunter, M. G.;
Pettipher, R. J. Immunol. 2005, 175, 6531.
5. Yoshimura-Uchiyama, C.; Iikura, M.; Yamaguchi, M.; Nagase, H.; Ishii, A.;
Matsushima, K.; Yamamoto, K.; Shichijo, M.; Bacon, K. B.; Hirai, K. Clin. Exp.
Allergy 2004, 34, 1283.
6. Gervais, F. G.; Cruz, R. P.; Chateauneuf, A.; Gale, S.; Sawyer, N.; Nantel, F.;
Metters, K. M.; O’Neill, G. P. J. Allergy Clin. Immunol. 2001, 108, 982.
7. Xue, L.; Barrow, A.; Pettipher, R. J. Immunol. 2009, 182, 7580.
8. Reviews: (a) Ulven, T.; Kostenis, E. Curr. Top. Med. Chem. 2006, 6, 1427; (b) Ly, T.
W.; Bacon, K. B. Exp. Opin. Invest. Drugs 2005, 14, 769.
9. (a) Stearns, B. A.; Baccei, C.; Bain, G.; Broadhead, A.; Clark, R. C.; Coate, H.;
Evans, J. F.; Fagan, P.; Hutchinson, J. H.; King, C.; Lee, C.; Lorrain, D. S.; Prasit, P.;
Prodanovich, P.; Santini, A.; Scott, J. M.; Stock, N. S.; Truong, Y. P. Bioorg. Med.
it lacks functional activity for the other PGD2 DP receptor (27
in cAMP).
lM