COMMUNICATIONS
8:
A
solid sample of
2
(72 mg, 0.10 mmol) was mixed with
1124 ± 1126; b) Verfahren zur Herstellung von Rutheniumkomplexen,
BASF AG, O.Z.0050/48279.
[8] M. L. Christ, S. Sabo-Etienne, B. Chaudret, Organometallics 1994, 13,
3800 ± 3804.
[HNMe2Ph][B(C6F5)4] (80 mg, 0.10 mmol) and treated at 808C with of
CD2Cl2 (2 mL). According to the NMR spectra, the generated yellow
solution contained exclusively complex 8. 1H NMR (200 MHz, CD2Cl2,
608C): d 7.32 ± 6.97 (m, 5H, Ph-H), 3.0 (brs, 6H, NCH3), 2.39 ± 1.24 (m,
69H, PCy3 and RuCCH3), 6.33 (t, 2J(P,H) 15 Hz, 1H, RuH); 31P NMR
(162 MHz, CD2Cl2, 708C): d 56.6 (s); 13C NMR (100.6 MHz, CD2Cl2,
Â
[9] M. Olivan, O. Eisenstein, K. G. Caulton, Organometallics 1997, 16,
2227 ± 2229.
[10] D. Huang, W. E. Streib, O. Eisenstein, K. G. Caulton, Angew. Chem.
1997, 109, 2096 ± 2098; Angew. Chem. Int. Ed. Engl. 1997, 36, 2004 ±
2006.
[11] M. Brookhart, B. Grant, A. F. Volpe, Organometallics 1992, 11, 3920 ±
3922.
[12] a) M. Bourgault, A. Castillo, M. A. Esteruelas, E. OnÄate, N. Ruiz,
Organometallics 1997, 16, 636 ± 645; b) J. Espuelas, M. A. Esteruelas,
F. J. Lahoz, L. A. Oro, N. Ruiz, J. Am. Chem. Soc. 1993, 115, 4683 ±
1
708C): d 311.9 (brs, RuCCH3), 147.4 (d, J(C,F) 239 Hz, C6F5), 137.7
(d, 1J(C,F) 245 Hz, C6F5), 135.7 (d, 1J(C,F) 247 Hz, C6F5), 129.0 (s,
NPh), 123.2, 118.1 and 113.4 (all brs, NPh), 41.5 (brs, NCH3), 40.2 (s,
RuCCH3), 34.0 (vt, N 23 Hz, C1 of PCy3), 30.6, 28.9, 26.7, 26.4, and 25.3
(all s, PCy3).
9: Analogous to the synthesis of 8, compound
quantitative yield from (20 mg, 0.028 mmol) and [H(OEt2)2]-
9 was prepared in
2
Â
4689; c) G. J. Spivak, J. N. Coalter, M. Olivan, O. Eisenstein, K. G.
[B{C6H3(CF3)2}4] (28 mg, 0.028 mmol) in CD2Cl2 and characterized spec-
troscopically at room temperature. 1H NMR (200 MHz, CD2Cl2): d 7.75,
7.59 (both m, 12H, B{C6H3(CF3)2}4), 3.36 (q, 3J(H,H) 6.6 Hz, 8H,
OCH2CH3), 2.7 ± 1.2 (m, 69H, PCy3 and RuCCH3), 1.19 (t, 3J(H,H)
Caulton, Organometallics 1998, 17, 999 ± 1001.
[13] Dr. A. Schäfer, BASF AG, unpublished results.
[14] W. Stüer, Dissertation, Universität Würzburg, to be submitted, 1998.
[15] Some examples of alkyne metathesis reactions with a carbyne- or
alkylidynemetal complex as catalyst are known: a) R. R. Schrock,
Acc. Chem. Res. 1986, 19, 342 ± 348; b) R. R. Schrock, Polyhedron
1995, 14, 3177 ± 3195; c) K. Weiss in Carbyne Complexes (Eds.: H.
Fischer, P. Hofmann, F. R. Kreissl, R. R. Schrock, U. Schubert, K.
Weiss), VCH, Weinheim, 1988, pp. 205 ± 228.
[16] a) K. Weiss, A. Michel, E.-M. Auth, U. H. F. Bunz, T. Mangel, K.
Müllen, Angew. Chem. 1997, 109, 522 ± 525; Angew. Chem. Int. Ed.
Engl. 1997, 36, 506 ± 509; b) A. Fürstner, G. Seidel, Angew. Chem.
1998, 110, 1758 ± 1760; Angew. Chem. Int. Ed. 1998, 37, 1734 ± 1736.
[17] M. A. Gallop, W. R. Roper, Adv. Organomet. Chem. 1986, 25, 121 ±
198.
6.6 Hz, 12H, OCH2CH3), 6.57 (t, J(P,H) 15 Hz, 1H, RuH); 31P NMR
2
(81 MHz, CD2Cl2): d 57.2 (s).
Selective ROM of cyclopentene with methyl acrylate: A solution of 2
(56 mg, 0.077 mmol) in a mixture of CH2Cl2 (2 mL), Et2O (2 mL), and
0.5 mL of a 1.6m solution of HBF4 in Et2O was added to a mixture of methyl
acrylate (50 mL, 0.552 mol) and cyclopentene (4 mL, 0.045 mol) at room
temperature. After the solution was stirred for 2 h at room temperature, the
solvent and excess of substrate were distilled off at normal pressure, the
remaining residue was treated with pentane (10 mL), and upon addition of
Et2O (60 mL) the solution was filtered through aluminum oxide (neutral,
activity grade III). After removal of the solvent, a colorless liquid (2.5 g)
was obtained, the composition of which was investigated by GC/MS. The
liquid contained the first members of a homologous series of long-chain
multiply unsaturated esters C7H11CO2CH3, C12H19CO2CH3, and
C17C27CO2CH3 in ratios of 50, 40, and 10%.
[18] a) W. A. Herrmann, W. C. Schattenmann, O. Nuyken, S. C. Glander,
Angew. Chem. 1996, 108, 1169 ± 1170; Angew. Chem. Int. Ed. Engl.
1996, 35, 1087 ± 1088; b) A. Fürstner, M. Picquet, C. Bruneau, P. H.
Dixneuf, Chem. Commun. 1998, 1315 ± 1316.
Received: July 10, 1998 [Z12124IE]
German version: Angew. Chem. 1998, 110, 3603 ± 3606
Keywords: carbyne complexes ´ metathesis ´ ruthenium ´
vinylidene complexes
Rapid Assembly of Oligosaccharides: Total
Synthesis of a Glycosylphosphatidylinositol
Anchor of Trypanosoma brucei**
[1] a) S. T. Nguyen, L. K. Johnson, R. H. Grubbs, J. Am. Chem. Soc. 1992,
114, 3974 ± 3975; b) G. C. Fu, S. T. Nguyen, R. H. Grubbs, J. Am.
Chem. Soc. 1993, 115, 9856 ± 9857; c) S. T. Nguyen, R. H. Grubbs, J. W.
Ziller, J. Am. Chem. Soc. 1993, 115, 9858 ± 9859; d) P. Schwab, M. B.
France, J. W. Ziller, R. H. Grubbs, Angew. Chem. 1995, 107, 2179 ±
2181; Angew. Chem. Int. Ed. Engl. 1995, 34, 2039 ± 2041; e) P. Schwab,
R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100 ± 110.
[2] Reviews: a) M. Schuster, S. Blechert, Angew. Chem. 1997, 109, 2124 ±
2144; Angew. Chem. Int. Ed. Engl. 1997, 36, 2036 ± 2055; b) A. S. K.
Hashmi, J. Prakt. Chem. 1997, 339, 195 ± 199; c) A. Fürstner, Top.
Catal. 1997, 4, 285 ± 299.
Â
Daniel K. Baeschlin, Andre R. Chaperon,
Virginie Charbonneau, Luke G. Green, Steven V. Ley,*
Ulrich Lücking, and Eric Walther
Glycoproteins and glycolipids are major components of the
outer surface of eukaryotic cells and play a vital role in
fundamental biological processes such as viral, bacterial, and
parasitic infections, immune defence, and inflammation.[1]
Intensive research into the biological role of carbohydrates
has led to an increased need for the synthesis of natural and
modified glycoconjugates. Although remarkable progress has
been made in the field of oligosaccharide synthesis,[2] further
innovations are still required since the synthesis of complex
oligosaccharides remains a highly specialized and time con-
[3] Representative examples: a) R. R. Schrock, Pure Appl. Chem. 1994,
66, 1447 ± 1454; b) J. H. Oskam, R. R. Schrock, J. Am. Chem. Soc.
1993, 115, 11831 ± 11845; c) R. R. Schrock, Acc. Chem. Res. 1990, 23,
158 ± 165.
[4] a) M. B. France, R. H. Grubbs, D. V. McGrath, R. A. Paciello,
Macromolecules 1993, 26, 4742 ± 4747; b) M. A. Hillmyer, S. T.
Nguyen, R. H. Grubbs, Macromolecules 1996, 30, 718 ± 721; c) J. C.
Marmo, K. B. Wagener, Macromolecules 1995, 28, 2602 ± 2606.
[5] a) M. F. Schneider, N. L. Lucas, J. Velder, S. Blechert, Angew. Chem.
1997, 109, 257 ± 259; Angew. Chem. Int. Ed. Engl. 1997, 36, 257 ± 259;
b) W. E. Crowe, Z. J. Zhang, J. Am. Chem. Soc. 1993, 115, 10998 ±
10999; c) W. E. Crowe, D. R. Goldberg, J. Am. Chem. Soc. 1995, 117,
5162 ± 5163; d) W. E. Crowe, D. R. Goldberg, Z. J. Zhang, Tetrahedron
Lett. 1996, 37, 2117 ± 2120; e) P. O. Nubel, H. B. Yokelson, R. B.
Moreland, V. Bagheri, S. A. Cohen, W. G. Bouslog, R. T. Behrends,
J. P. Nelson (Amoco Corp.), EP-B 626402, 1994 [Chem. Abstr. 1995,
123, 10201p].
[*] Prof. Dr. S. V. Ley, D. K. Baeschlin, Dr. A. R. Chaperon,
V. Charbonneau, Dr. L. G. Green, U. Lücking, Dr. E. Walther
Department of Chemistry, University of Cambridge
Lensfield Road, Cambridge CB21EW (UK)
Fax: (44)1223-336442
[**] This work was supported by a BP Endowment, a Novartis Research
Fellowship, the Zeneca Strategic Research Fund, the Glaxo-Welcome
Research Fund (S.V.L.), the Swiss National Science Foundation
(D.K.B., A.C., and E.W.), and the EU (U.L.).
[6] Kationische Rutheniumkomplexe, Verfahren zu ihrer Herstellung und
ihre Verwendung, BASF AG, NAE19980187.
[7] a) J. Wolf, W. Stüer, C. Grünwald, H. Werner, P. Schwab, M. Schulz,
Angew. Chem. 1998, 110, 1165 ± 1167; Angew. Chem. Int. Ed. 1998, 37,
Angew. Chem. Int. Ed. 1998, 37, No. 24
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3724-3423 $ 17.50+.50/0
3423