J. Am. Chem. Soc. 2001, 123, 6181-6182
6181
Generation of Homogeneous (sp3-C1)-Bridged
Cp/Amido and Cp/Phosphido Group 4 Metal
Chart 1
Ziegler-Natta Catalyst Systems
Klaus Kunz, Gerhard Erker,* Steve Do¨ring,
Roland Fro¨hlich,‡ and Gerald Kehr
Organisch-Chemisches Institut, UniVersita¨t Mu¨nster
Corrensstrasse 40, D-48149 Mu¨nster, Germany
Scheme 1
ReceiVed August 9, 2000
The silylene-bridged Cp/amido group 4 metal complexes have
played an important role in the development of homogeneous
Ziegler-Natta catalysis. Such “constrained geometry” catalysts,
derived from e.g. 1 (MIVX2 ) ZrCl2 or TiCl2) have been of great
interest because of their polymerization and, especially, copo-
lymerization behavior of R-olefins and other reactive alkenes.1
Cp/amido ligands with larger bridging moieties have been
described,2 but it is remarkable that the corresponding chemistry
of the methylene- and alkylidene-(sp3-C1)-bridged Cp/amido
systems (2) appears not at all developed.3 We here wish to disclose
two rather simple and straightforward synthetic routes to such
systems (2) and their Cp/phosphido relatives (3) and describe first
examples of their use in homogeneous Ziegler-Natta catalysis
(Chart 1).
“constrained geometry” system 1 was obtained by treatment of
tetramethylfulvene 97 with Li[HN(CMe3)] (5b) followed by
deprotonation with tert-butyllithium and transmetalation to Zr to
give [Cp*-CH2-N(CMe3)]Zr(NEt2)2 (2c) in 66% yield [1H/13C
NMR: δ 4.34/68.6 (Cp*CH2N)]6 (Scheme 1).
The first route starts with a “non-enolizable” fulvene, such as
6-tert-butylfulvene (4).4 Addition of, for example, lithium 4-meth-
ylanilide (5a) yields the functionalized lithium cyclopentadienide
6a. Subsequent deprotonation (LDA) gave the dianionic sp3-C1-
bridged “constrained geometry” ligand 7a. Analogous treatment
of the fulvene 4 with lithium tert-butylamide (5b) followed by
deprotonation with tert-butyllithium gave 7b. Transmetalation to
zirconium employing the [Cl2Zr(NEt2)2(THF)2] reagent (8a)5a
proceeded without problems to yield the complexes 2a (66%)
and 2b (71%), respectively. Due to the chiral bridge each of these
complexes exhibits four diastereotopic 1H NMR Cp methine
resonances [2a: δ 6.38, 5.93 (R-CH), 6.10, 6.07 (â-CH)] and
pairs of diastereotopic -N(CH2AB)- signals [2a: δ 3.31, 3.28,
3.19, 3.08].6
Our second route to “CpC1N” systems starts with “non-
enolizable” 6-aminofulvenes, such as 10.8a Treatment of 6-di-
methylaminofulvene (10) with lithium anilide 5c results in an
addition/elimination sequence to cleanly yield the formimino-
substituted Cp-anion system 11 (isolated as a THF adduct in 91%
yield).8b Addition of p-tolyllithium yields the “dianionic” ligand
system isolated as the dilithio compound 12 (94%). Subsequent
transmetalation by treatment with [Cl2Zr(NEt2)2(THF)2] (8a) then
1
gave the “CpC1N”ZrX2 system 2d [75% isolated, H NMR: δ
6.03 (µ-sp3-CH), Cp signals at δ 6.14, 5.90 (R-CH), 6.00, 5.96
AB
(â-CH), four diastereotopic Zr-NCH2 resonances at δ 3.38,
The related sp3-C1-bridged Cp/amido metal complex analogue
2c (“Cp*C1N”ZrX2) of the silylene-bridged (“Cp*Si1N”ZrX2)
3.37, 3.28, and 3.16].
The reagent 11 adds 1 equiv of methyllithium to yield the
“CpC1N”Li2 reagent 13 (96%), which was transmetalated by treat-
ment with [Cl2Ti(NMe2)2] (8b)5b to give the “CpC1N”Ti(NMe2)2
complex 2e (69% isolated). Single crystals of 2e that were suited
for an X-ray crystal structure analysis9 were obtained from
dichloromethane at -20 °C during several days (Scheme 2).
In the crystal complex 2e exhibits a close to tetrahedral
coordination geometry of the central titanium atom. The fused
cyclopentadienide ligand is η5-coordinated, exhibiting a slightly
unsymmetrical array of Ti-C bonds, with Ti-C1 (2.266(2) Å)
being slightly shorter than the Ti-C2/C5 (2.314(2), 2.351(2) Å)
and Ti-C3/C4 bonds (2.402(2), 2.424(2) Å). The C1-C6 vector
(1.505(2) Å) forms an angle of 155.3° with the Cp-plane (Cp-
‡ X-ray crystal structure analysis.
(1) Reviews: McKnight, A. L.; Waymouth, R. M. Chem. ReV. 1998, 98,
2587-2598. Okuda, J.; Eberle, T. Half-Sandwich Complexes as Metallocene
Analogues. In Metallocenes: Synthesis, ReactiVity, Applications; Togni, A.,
Haltermann, R. L., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 1, pp 415-
453.
(2) (a) Diaz, H. V. R.; Wang, Z.; Bott, S. G. J. Organomet. Chem. 1996,
508, 91-99. Enders, M.; Rudolph, R.; Pritzkow, H. J. Organomet. Chem.
1997, 459, 251-256. Sinnema, P.-J.; van der Veen, L.; Spek, A. L.; Veldman,
N.; Teuben, J. H. Organometallics 1997, 16, 4245-4247. Witte, P. T.;
Meetsma, A.; Hessen, B.; Budzelaar, P. H. M. J. Am. Chem. Soc. 1997, 119,
10561-10562. Gomes, P. T.; Green, M. L. H.; Martins, A. M. J. Organomet.
Chem. 1998, 551, 133-138. (b) Rieger, B. J. Organomet. Chem. 1991, 420,
C17-C20. Christie, S. D. R.; Man, K. W.; Whitby, R. J.; Slawin, A. M. Z.
Organometallics 1999, 18, 348-359. (c) For sp2-C1-bridged analogues see:
Duda, L.; Erker, G.; Fro¨hlich, R.; Zippel, F. Eur. J. Inorg. Chem. 1998, 1153-
1162. Bertuleit, A.; Ko¨nemann, M.; Duda, L., Erker, G.; Fro¨hlich, R. Top.
Catal. 1999, 7, 37-44.
(6) Typical example: 2c: 290 mg (66%) of 2c isolated as a colorless oil.
Anal. Calcd for C22H43N3Zr (440.8): C, 59.95; H, 9.83; N, 9.53. Found: C,
59.10; H, 10.54; N, 9.67. 1H NMR (THF-d8, 200 MHz): δ 4.34 (s, 2H, CH2),
3.5-3.2 (m, 8H, NCH2CH3), 2.08, 2.06 (s, each 6H, CpCH3), 1.15 (s, 9H,
CMe3), 0.97 (t, 12H, NCH2CH3). 13C NMR (THF-d8, 150 MHz): δ 119.5
(ipso-C), 68.6 (CH2), 55.6/29.4 (CMe3), 43.5/15.2 (NCH2CH3), 11.2/10.5
(CpCH3).
(3) Ko¨nemann, M.; Erker, G.; Fro¨hlich, R.; Wu¨rthwein, E.-U. J. Am. Chem.
Soc. 1997, 119, 11155-11164.
(4) (a) Stone, K. L.; Little, R. D. J. Org. Chem. 1984, 49, 1849-1853. (b)
For Cp-anion syntheses by nucleophilic addition to fulvenes see, e.g.: Ziegler,
K.; Scha¨fer, W. Liebigs Ann. Chem. 1934, 511, 101-109. Ziegler, K.; Gellert,
H.-G.; Martin, H.; Nagel, K.; Schneider, J. Liebigs Ann. Chem. 1954, 589,
91-121. Sullivan, M. F.; Little, W. F. J. Organomet. Chem. 1967, 8, 277-
285. Renaut, P.; Tainturier, G.; Gautheron, B. J. Organomet. Chem. 1978,
148, 35-42.
(7) (a) Hashimoto, H.; Tobita, H.; Ogino, H. Organometallics 1993, 12,
2182-2187. See also: Do¨ring, S.; Erker, G. Synthesis 2001, 43-45. (b)
Heidemann, T.; Jutzi, P. Synthesis 1994, 777-778.
(8) (a) Hafner, K.; Schulz, G.; Wagner, K. Liebigs Ann. Chem. 1964, 678,
39-53. See also: Hafner, K.; Vo¨pel, K. H.; Ploss, G.; Ko¨nig, C. Org. Synth.
1967, 47, 52-54. (b) Kunz, K.; Erker, G.; Kehr, G.; Fro¨hlich, R. Organo-
metallics 2001, 20, 392-400.
(5) (a) Kempe, P.; Brenner, S.; Arndt, P. Z. Anorg. Allg. Chem. 1995, 621,
2021-2024. (b) Benzing, E.; Kornicker, W. Chem. Ber. 1961, 94, 2263-
2267.
(9) For details, see the Supporting Information.
10.1021/ja0029634 CCC: $20.00 © 2001 American Chemical Society
Published on Web 06/20/2001