Chemistry Letters 2000
547
Williams, D. St. Laurent, D. Friedrich, E. Pinard, B. A. Roden,
and L. A. Paquette, J. Am. Chem. Soc., 116, 4689 (1994).
Synthetic approach; d) G. Mehta and M. S. Reddy, Tetrahedron
Lett., 31, 2039 (1990). e) M. T. Crimmins and P. S. Watson,
Tetrahedron Lett., 34, 199 (1993). f) D. A. Sandham and A. I.
Meyers, J. Chem. Soc., Chem. Commun., 1995, 2511. g) G.
Mehta, M. S. Reddy, and A. Thomas, Tetrahedron, 54, 7865
(1998).
a) M. Ishizaki, K. Iwahara, K. Kyoumura, and O. Hoshino,
Synlett, 1999, 587. b) M. Ishizaki, K. Iwahara, Y. Niimi, H.
Satoh, and O. Hoshino, Tetrahedron, 57, 2729 (2001).
For a review, K. M. Brummond and J. L. Kent, Tetrahedron, 56,
3263 (2000).
3
4
afforded an aldehyde (13), which was treated with ethynylmag-
nesium bromide to furnish inseparable ca. 1:1 mixture of
propargyl alcohols (14) in 82% yield. Desilylation of 14 with
TBAF gave a diol (15) in 83% yield. Pauson–Khand reaction
of 15 followed by chromatographic separation afforded desired
angular tricyclic compounds (16a,b)10 in 23% and 30% yields,
respectively. Stereochemistry of 16a and 16b was determined
by NOE experiment. Furthermore, 16b could be converted to
16a (84% yield), which has stereochemistry of the hydroxy
group on B ring corresponding to that in 1, by Mitsunobu reac-
tion and subsequent hydrolysis.
In summary, we have investigated to synthesize various
angular type 6-5-5 tricyclic compounds (12, 16) by intramolec-
ular Pauson–Khand reaction of exo-methylenecyclohexyl-
alkynes. Among them, 16a, which has two hydroxy groups on
both A and B rings, could serve a potential key intermediate for
total synthesis of magellanine (1). Approach to 1 by the present
methodology is in progress.
5
6
S. Pereira and M. Srebnik, Aldrichimica Acta, 26, 17 (1993).
F. Rezqui and M. M. E. Gaied, Tetrahedron Lett., 39, 5965
(1998).
J. L. Luche and A. L. Gemal, J. Am. Chem. Soc., 101, 5848
(1979).
7
8
9
S. Shambayati, W. E. Crowe, and S. L. Schreiber, Tetrahedron
Lett., 31, 5289 (1990).
All new compounds gave satisfactory 1H and 13C NMR, IR, and
mass spectral data.
1
10 Spectral data for 16a; mp 173–175 °C; H NMR (270 MHz,
CDCl3–CD3OD) δ 6.06 (1H, s), 5.10 (1H, d, J = 9.9 Hz), 3.57
(1H, dd, J = 3.6, 11.9 Hz), 3.80 (2H, brs), 2.69, 1.98 (each 1H,
d, J = 17.5 Hz), 2.52 (1H, dt, J = 10.9, 14.2 Hz), 2.26 (1H, dt, J
= 4, 11 Hz), 1.44–1.88 (6H, m), 1.18–1.27 (1H, m); 13C NMR
(67.5 MHz, CDCl3–CD3OD) δ 212.3, 194.4, 125.0, 69.0, 68.6,
58.9, 43.6, 43.0, 37.5, 32.0, 24.3, 20.5; IR 3360, 3327, 2934,
1689, 1630 cm–1; FAB MS m/z 209 (M++1); high-resolution
FAB mass m/z calcd for C12H17O3 (M++1) 209.1178, found:
209.1168. For 16b; mp 168–170 °C; 1H NMR (270 MHz,
CDCl3–CD3OD) δ 6.03 (1H, s), 4.85 (1H, dd, J = 5.3, 7.6 Hz),
4.02 (1H, dd, J = 3.8, 12 Hz), 3.30 (2H, brs), 2.71, 1.87 (each
1H, d, J = 17.5 Hz), 2.35 (1H, dt, J = 7.8, 13.2 Hz), 2.02 (1H, dt,
J = 5.3, 12.9 Hz), 1.85–1.88 (2H, m), 1.46–1.75 (4H, m),
1.19–1.36 (1H, m); 13C NMR (67.5 MHz, CDCl3–CD3OD) δ
212.8, 187.7, 127.6, 67.9, 67.4, 58.6, 44.0, 42.4, 38.3, 32.1, 24.1,
20.6; IR 3357, 3279, 2937, 1691, 1625 cm–1; FAB MS m/z 209
(M++1); high-resolution FAB mass m/z calcd for C12H17O3
(M++1) 209.1178, found: 209.1172.
References and Notes
1
M. Castillo, L. A. Loyala, G. Morales, I. Singh, C. Calvo, H. L.
Holland, and D. B. MacLean, Can. J. Chem., 54, 2893 (1976).
Total synthesis; a) G. C. Hirst, T. O. Johnson, Jr., and L. E.
Overman, J. Am. Chem. Soc., 115, 2992 (1993). b) L. A.
Paquette, D. Friedrich, E. Pinard, J. P. Williams, D. St. Laurent,
and B. A. Roden, J. Am. Chem. Soc., 115, 4377 (1993). c) J. P.
2