J. Am. Chem. Soc. 2001, 123, 6203-6204
6203
monooxygenases.6,7 However, little is known about mechanistic
details on the reactions of bis(µ-oxo)dicopper(III) complexes and
external substrates.8
C-H Bond Activation of External Substrates with a
Bis(µ-oxo)dicopper(III) Complex
Masayasu Taki,‡ Shinobu Itoh,†,* and Shunichi Fukuzumi‡,*
Department of Chemistry
Graduate School of Science
Osaka City UniVersity, 3-3-138, Sugimoto
Sumiyoshi-ku, Osaka, 558-8585, Japan
Department of Material and Life Science
Graduate School of Engineering
We report herein the mechanistic studies on the C-H bond
activation of external substrates such as 10-methyl-9,10-dihy-
droacridine (AcrH2) and 1,4-cyclohexadiene (CHD) with a bis-
(µ-oxo)dicopper(III) complex supported by bidentate ligand LPy1Bz
(LPy1Bz ) N-ethyl-N-[2-(2-pyridyl)ethyl]-R,R-dideuterio-benzy-
lamine).9 An unusual kinetic behavior observed in the present
reactions implicates the existence of a new copper-active oxygen
intermediate that is responsible for the C-H bond activation of
the external substrates.
Osaka UniVersity, CREST
Japan Science and Technology Corporation
2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
ReceiVed February 26, 2001
ReVised Manuscript ReceiVed May 22, 2001
C-H bond activation by metal-oxo species has long been one
of the most important and attractive research objectives not only
in bioinorganic chemistry but also in numerous and diverse array
of catalytic oxidation reactions for organic synthesis.1 Reactivity
of iron-oxo complexes of both heme and non-heme systems in
various oxidation states has so far been studied extensively to
provide valuable insight into the catalytic mechanisms of iron-
dependent oxygenases as well as of Fenton-type and Gif-type
reactions.1-3 Much attention has recently been focused on the
dinuclear copper-oxo species such as bis(µ-oxo)dicopper(III),
since it is considered as a possible active oxygen intermediate in
the aliphatic hydroxylation by dinuclear copper monooxygenases.4
Structural and spectroscopic characterizations of the bis(µ-oxo)
species have been well-documented,5 and their decomposition
processes leading to intramolecular aromatic and aliphatic ligand
hydroxylation as well as oxidative N-dealkylation of the ligand
sidearm have been investigated as functional models for copper
Introduction of dry O2 gas into an acetone solution of [CuI-
(LPy1Bz)(CH3CN)]PF6 at -94 °C resulted in a spectral change,
where a characteristic absorption band at 400 nm (ꢀ ) 17400
M-1 cm-1) readily developed (see Supporting Information, S1).
The resulting acetone solution was ESR silent, and the resonance
Raman spectrum of the oxygenated intermediate in frozen acetone-
d6 (λex ) 457.9 nm) exhibited a characteristic peak at 604 cm-1
(S2).10 These spectral features together with the observed stoi-
chiometry of Cu:O2 ) 2:1 demonstrate the formation of a bis-
(µ-oxo)dicopper(III) intermediate (1).10 The bis(µ-oxo)dicopper-
(III) complex supported by the deuterated ligand LPy1Bz was stable
enough to examine the reactivity toward external substrates at
the low temperature.
Addition of the substrates into an acetone solution of 1 (5.0 ×
10-5 M) at -94 °C under Ar atmosphere resulted in a color
change from dark brown to green. Figure 1A shows the spectral
change for the reaction with AcrH2 as a typical example, where
the characteristic absorption band at 400 nm due to 1 decreases
with a concomitant increase in the absorption bands at 358, 395,
415, and 440 nm due to the oxidation product AcrH+ (N-
methylacridinium ion). From the absorption intensity at 440 nm
† Osaka City University.
‡ Osaka University.
(1) (a) Valentine, J. S., Foote, C. S., Greenberg, A., Liebman, J. F., Eds.
ActiVe Oxygen in Biochemistry; Chapman and Hall: London, 1995. (b) Foote,
C. S., Valentine, J. S., Greenberg, A., Liebman, J. F., Eds. ActiVe Oxygen in
Chemistry; Chapman and Hall: London, 1995. (c) Meunier, B., Ed. Biomimetic
Oxidations Catalyzed by Transition Metal Complexes; Imperial College
Press: London, 1999. (d) Meunier, B., Ed. Metal-Oxo and Metal-Peroxo
Species in Catalytic Oxidations; Springer: Berlin, 2000.
(ꢀ ) 2150 M-1 cm-1 11 is determined the yield of AcrH+ as 100%
)
based on 1. Oxidation of CHD also proceeded smoothly to
produce the corresponding oxidation products, i.e., benzene.12 The
nearly quantitative formation was confirmed by GC-MS. Thus,
(2) (a) Que, L., Jr.; Ho, R. Y. N. Chem. ReV. 1996, 96, 2607-2624. (b)
Wallar, B. J.; Lipscomb, J. D. Chem. ReV. 1996, 96, 2625-2657. (c) Feig, A.
L.; Lippard, S. J. Chem. ReV. 1994, 94, 759-805.
(3) (a) Barton, D. H. R.; Doller, D. Acc. Chem. Res. 1992, 25, 504-512.
(b) Sawyer, D. T.; Sobkowiak, A.; Matsushita, T. Acc. Chem. Res. 1996, 29,
409-416. (c) FacFaul, P. A.; Wayner, D. D. M.; Ingold, K. U. Acc. Chem.
Res. 1998, 31, 159-162.
(6) (a) Mahapatra, S.; Halfen, J. A.; Tolman, W. B. J. Am. Chem. Soc.
1996, 118, 11575-11586. (b) Holland, P. L.; Rodgers, K. R.; Tolman, W. B.
Angew. Chem., Int. Ed. 1999, 38, 1139-1142.
(7) Itoh, S.; Taki, M.; Nakao, H.; Holland, P. L.; Tolman, W. B.; Que, L.,
Jr.; Fukuzumi, S. Angew. Chem., Int. Ed. 2000, 39, 398-400.
(4) (a) Karlin, K. D., Tyekla´r, Z. Eds. Bioinorganic Chemistry of Copper;
Chapman & Hall: New York, 1993. (b) Kitajima, N.; Moro-oka, Y. Chem.
ReV. 1994, 94, 737-757. (c) Liang, H. C.; Dahan, M.; Karlin, K. D. Curr.
Opin. Chem. Biol. 1999, 3, 168-175. (d) Tolman, W. B. Acc. Chem. Res.
1997, 30, 227-237. (e) Holland, P. L.; Tolman, W. B. Coord. Chem. ReV.
1999, 190-192, 855-869. (f) Mahadevan, V.; Gebbink, R. K.; Stack, T. D.
P. Curr. Opin. Chem. Biol. 2000, 4, 228-234. (g) Schindler, S. Eur. J. Inorg.
Chem. 2000, 2311-2326.
(5) (a) Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Kaderli, S.; Young,
V. G., Jr.; Que, L., Jr.; Zuberbu¨hler, A. D.; Tolman, W. B. Science 1996,
271, 1397-1400. (b) Mahapatra, S.; Halfen, J. A.; Wilkinson, E. Z.; Pan, G.;
Wang, X.; Young, V. G., Jr.; Cramer, C. J.; Que, L., Jr.; Tolman, W. B. J.
Am. Chem. Soc. 1996, 118, 11555. (c) Mahapatra, S.; Young, V. G., Jr.;
Kaderli, S.; Zuberbu¨hler, A. D.; Tolman, W. B. Angew. Chem., Int. Ed. Engl.
1997, 36, 130-133. (d) Holland, P. L.; Cramer, C. J.; Wilkinson, E. C.;
Mahapatra, S.; Rodgers, K. R.; Itoh, S.; Taki, M.; Fukuzumi, S.; Que, L., Jr.;
Tolman, W. B. J. Am. Chem. Soc. 2000, 122, 792-802. (e) Mahadevan, V.;
Hou, Z.; Cole, A. P.; Root, D. E.; Lal, T. K.; Solomon, E. I.; Stack, T. D. P.
J. Am. Chem. Soc. 1997, 119, 11996-11997. (f) Henson, M. J.; Mukherjee,
P.; Root, D. E.; Stack, T. D. P.; Solomon, E. I. J. Am. Chem. Soc. 1999, 121,
10332-10345. (g) Hayashi, H.; Fujinami, S.; Nagatomo, S.; Ogo, S.; Suzuki,
M.; Uehara, A.; Watanabe, Y.; Kitagawa, T. J. Am. Chem. Soc. 2000, 122,
2124-2125. (h) Straub, B. F.; Rominger, F.; Hofmann, P. Chem. Commun.
2000, 1611-1612.
(8) (a) Berreua, L. M.; Mahapatra, S.; Halfen, J. A.; Houser, R. P.; Young,
V. G., Jr.; Tolman, W. B. Angew. Chem., Int. Ed. 1999, 38, 207-210. (b)
Mahadevan, V.; DuBois, J. L.; Hedman, B.; Hogson, K. O.; Stack, T. D. P.
J. Am. Chem. Soc. 1999, 121, 5583-5584. (c) Mahadevan, V.; Henson, M.
J.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 2000, 122, 10249-
10250. (d) Obias, H. V.; Lin, Y.; Murthy, N. N.; Pidcock, E.; Solomon, E. I.;
Ralle, M.; Blackburn, N. J.; Neuhold, Y.-M.; Zuberbu¨hler, A. D.; Karlin, K.
D. J. Am. Chem. Soc. 1998, 120, 12960-12961.
(9) For a recent report on the C-H bond activation by distinct copper(III)
complexes, see: Lockwood, M. A.; Blubaugh, T. J.; Collier, A. M.; Lovell,
S.; Mayer, J. M. Angew. Chem., Int. Ed. 1999, 38, 225-227.
(10) Because of low intensity of the Raman bands of the 18O-derivative,
the amount of the isotope shift could not be determined accurately. Although
the Raman evidence for the bis(µ-oxo)dicopper(III) core is not as strong as
in earlier instances,9 the structural similarity of this molecule to others in the
series7 and great similarities of the UV-vis and the 16O-Raman data to those
of the other bis(µ-oxo)dicopper(III) complexes5 are strong enough arguments
for the presence of the diamond core intermediate.
(11) Itoh, S.; Kumei, H.; Nagatomo, S.; Kitagawa, T.; Fukuzumi, S. J.
Am. Chem. Soc. 2001, 123, 2167-2175.
(12) Stack and co-workers reported that the bis(µ-oxo)dicopper(III) complex
supported by N,N,N′,N′-tetramethyl-1,3-propanediamine did not react with
1,4-cyclohexadine and 9,10-dihydroanthracene.8b
10.1021/ja015721s CCC: $20.00 © 2001 American Chemical Society
Published on Web 06/02/2001