10.1002/chem.201905874
Chemistry - A European Journal
COMMUNICATION
[17] L. K. Dyall, J. J. Harvey, T. B. Jarman, Aust. J. Chem. 1992, 45, 371–
384.
Experimental Section
[18] L. K. Dyall, Aust. J. Chem. 1984, 37, 2013–2026.
[19] a) J. H. Hall, J. Org. Chem. 1968, 33, 2954–2956; b) T. Zincke, H. Jaenke,
Ber. Dtsch. Chem. Ges. 1888, 21, 540–548; c) T. Zincke, A. Th. Lawson,
Ber. Dtsch. Chem. Ges. 1887, 20, 1176–1183; d) R. A. Carboni, J. E.
Castle, J. Am. Chem. Soc. 1962, 84, 2453–2454; e) R. A. Carboni, J. C.
Kauer, J. E. Castle, H. E. Simmons, J. Am. Chem. Soc. 1967, 89, 2618–
2625.
General protocol for the synthesis of 2H-2-(aryl)benzo[d]-1,2,3-
triazoles and 2H-2-(aryl)benzo[d]-1,2,3-triazole N-oxide derivatives:
Starting material (0.18 mmol), NBu4BF4 (0.07 mmol), and NaOH (0.5
mmol) or Et3N (2.16 mmol) were dissolved to either MeOH or 3:2
THF:MeOH (5 mL). The reaction mixture was then stirred for ~30 min at
33-37 °C (RT) and during that time the CuSn7Pb15 cathode was gently
polished and glassy carbon anode was cleaned with H2O and acetone
before constant current electrolysis (either 2.4 or 4.1 mA cm-2) was started.
The reaction was controlled by analyzing the crude reaction mixture
periodically by 1H or 19F NMR. After the reaction was complete, the
reaction mixture was evaporated. Purification of the crude material by flash
column chromatography (SiO2) using mixtures of cyclohexane:ethyl
acetate as eluents afforded the title compounds.
[20] P. Spagnolo, P. Zanirato, J. Chem. Soc. Perkin Trans. 1 1988, 2615–
2620.
[21] N. Khatun, A. Modi, W. Ali, B. K. Patel, J. Org. Chem. 2015, 80, 9662–
9670.
[22] a) X. Shang, S. Zhao, W. Chen, C. Chen, H. Qiu, Chem. Eur. J. 2014,
20, 1825–1828; b) J. Li, W. Cong, Z. Gao, J. Zhang, H. Yang, G. Jiang,
Org. Biomol. Chem. 2018, 16, 3479–3486.
[23] T. V. Nykaza, T. S. Harrison, A. Ghosh, R. A. Putnik, A. T. Radosevich,
J. Am. Chem. Soc. 2017, 139, 6839–6842.
[24] a) J. Dong, B. Jin, P. Sun, Org. Lett. 2014, 16, 4540–4542; b) G.-B. Liu,
H.-Y. Zhao, H.-J. Yang, X. Gao, M.-K. Li, T. Thiemann, Adv. Synth. Catal.
2007, 349, 1637–1640; c) A. Recca, E. Libertini, P. Finocchiaro, H. S.
Munro, D. T. Clark, Macromolecules 1988, 21, 2641–2642.
[25] B. H. Kim, S. K. Kim, Y. S. Lee, Y. M. Jun, W. Baik, B. M. Lee,
Tetrahedron Lett. 1997, 38, 8303–8306.
Acknowledgements
Support by the DFG (Wa1276/17) is highly appreciated. TW
gratefully acknowledges the fellowship by the Oskar Huttunen
Foundation.
[26] J. F.K. Wilshire, Aust. J. Chem. 1988, 41, 617–622.
[27] a) J. Rosevear, J. F.K. Wilshire, Aust. J. Chem. 1984, 37, 2489–2497; b)
S. Tanimoto, T. Kamano, Synthesis 1986, 1986, 647–649.
[28] W. Baik, T. H. Park, B. H. Kim, Y. M. Jun, J. Org. Chem. 1995, 60, 5683–
5685.
Keywords: electrochemistry • reduction • nitrogen heterocycles
• azo compounds • sustainable chemistry
[1]
[2]
E. Obijalska, P. Kaszynski, A. Jankowiak, V. G. Young, Polyhedron 2011,
30, 1339–1348.
[29] M. Pizzotti, S. Cenini, R. Psaro, S. Costanzi, J. Mol. Catal. 1990, 63,
299–304.
O. de Moor, C. R. Dorgan, P. D. Johnson, A. G. Lambert, C. Lecci, C.
Maillol, G. Nugent, S. D. Poignant, P. D. Price, R. J. Pye, R. Storer, J. M.
Tinsley, R. Vickers, R. van Well, F. J. Wilkes, F. X. Wilson, S. P. Wren,
G. M. Wynne, Bioorg. Med. Chem. Lett. 2011, 21, 4828–4831.
R. Loddo, F. Novelli, A. Sparatore, B. Tasso, M. Tonelli, V. Boido, F.
Sparatore, G. Collu, I. Delogu, G. Giliberti, P. La Colla, Bioorg. Med.
Chem. 2015, 23, 7024–7034.
[30] J. Li, H. Zhou, J. Zhang, H. Yang, G. Jiang, Chem. Commun. 2016, 52,
9589–9592.
[31] For extensive list of methods in the patent literature, please refer to ref.
24b
[3]
[32] K. Elbs, W. Keiper, J. Prakt. Chem. 1902, 67, 580–584.
[33] B. Hyo Kim, D. Byung Lee, D. Ho Kim, R. Han, Y. Moo Jun, W. Baik,
Heterocycles 2000, 53, 841–850.
[4]
[5]
[6]
Tanabe, Junichi and Lennartz, Christian. Fluoroscent Organic Light
Emitting Elements Having High Effiency (US 9,853,224 B2).
Q. Tian, X. Chen, W. Liu, Z. Wang, S. Shi, C. Kuang, Org. Biomol. Chem.
2013, 11, 7830–7833.
[34] P. G. Houghton, D. F. Pipe, C. W. Rees, J. Chem. Soc. Perkin Trans. 1
1985, 1471–1479.
[35] a) B. A. Frontana-Uribe, R. D. Little, J. G. Ibanez, A. Palma, R. Vasquez-
Medrano, Green Chem. 2010, 12, 2099–2119; b) E. J. Horn, B. R. Rosen,
P. S. Baran, ACS Cent. Sci. 2016, 2, 302–308; c) Y. Jiang, K. Xu, C.
Zeng, Chem. Rev. 2018, 118, 4485–4540; d) M. D. Kärkäs, Chem. Soc.
Rev. 2018, 47, 5786–5865; e) S. Möhle, M. Zirbes, E. Rodrigo, T.
Gieshoff, A. Wiebe, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57,
6018–6041; Angew. Chem. 2018, 130, 6124–6149; f) A. Wiebe, T.
Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Angew.
Chem. Int. Ed. 2018, 57, 5594–5619; Angew. Chem. 2018, 130, 5694–
5721.
a) S. Ueda, M. Su, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50,
8944–8947; Angew. Chem. 2011, 123, 9106–9109. b) I. P. Beletskaya,
D. V. Davydov, M. Moreno-Mañas, Tetrahedron Lett. 1998, 39, 5617–
5620.
[7]
T. Garnier, M. Danel, V. Magné, A. Pujol, V. Bénéteau, P. Pale, S.
Chassaing, J. Org. Chem. 2018, 83, 6408–6422.
[8]
[9]
S. Shi, C. Kuang, J. Org. Chem. 2014, 79, 6105–6112.
a) I. P. Beletskaya, D. V. Davydov, M. Moreno-Mañas, Tetrahedron Lett.
1998, 39, 5621–5622; b) D. V. Davydov, V. V. Chernyshev, V. B.
Rybakov, Y. F. Oprunenko, I. P. Beletskaya, Mendeleev Commun. 2018,
28, 287–289.
[36] S. R. Waldvogel, S. Lips, M. Selt, B. Riehl, C. J. Kampf, Chem. Rev. 2018,
118, 6706–6765.
[37] a) E. Rodrigo, S. R. Waldvogel, Green Chem. 2018, 20, 2013–2017; b)
E. Rodrigo, S. R. Waldvogel, Chem. Sci. 2019, 10, 2044–2047; c) E.
Rodrigo, H. Baunis, E. Suna, S. R. Waldvogel, Chem. Commun. 2019,
55, 12255–12258.
[10] a) S. Riedmüller, B. Nachtsheim, Synlett 2015, 26, 651–655; b) S.
Roshandel, M. J. Lunn, G. Rasul, D. S. M. Ravinson, S. C. Suri, G. K. S.
Prakash, Org. Lett. 2019, 21, 6255–6258.
[11] Z. Liu, R. C. Larock, J. Org. Chem. 2006, 71, 3198–3209.
[12] Y. Liu, W. Yan, Y. Chen, J. L. Petersen, X. Shi, Org. Lett. 2008, 10, 5389–
5392.
[38] a) C. Gütz, V. Grimaudo, M. Holtkamp, M. Hartmer, J. Werra, L.
Frensemeier, A. Kehl, U. Karst, P. Broekmann, S. R. Waldvogel,
ChemElectroChem 2018, 5, 247–252; b) C. Gütz, M. Bänziger, C.
Bucher, T. R. Galvão, S. R. Waldvogel, Org. Process Res. Dev. 2015,
19, 1428–1433; c) C. Gütz, M. Selt, M. Bänziger, C. Bucher, C. Römelt,
N. Hecken, F. Gallou, T. R. Galvão, S. R. Waldvogel, Chem. Eur. J. 2015,
21, 13878–13882. d) M. J. Gálvez-Vázquez, P. Moreno-García, S. R.
Waldvogel, P. Broekmann, ChemElectroChem. 2019, 6, 2324–2330.
[39] a) C. Gütz, B. Klöckner, S. R. Waldvogel, Org. Process Res. Dev. 2016,
20, 26–32. b) S. Lips, D. Schollmeyer, R. Franke, S. R.
[13] T. Ryu, J. Min, W. Choi, W. H. Jeon, P. H. Lee, Org. Lett. 2014, 16, 2810–
2813.
[14] H. Li, H. Deng, Synthesis 2017, 49, 2711–2720.
[15] J. Jo, H. Y. Lee, W. Liu, A. Olasz, C.-H. Chen, D. Lee, J. Am. Chem. Soc.
2012, 134, 16000–16007.
[16] M. P. Terpugova, Y. I. Amosov, I. L. Kotlyarevskii, Russ. Chem. Bull.
1982, 31, 1040–1042.
This article is protected by copyright. All rights reserved.