Organic Letters
Letter
(15) Yeung, Y.-Y.; Corey, E. J. Tetrahedron Lett. 2007, 48, 7567.
model nucleophile, we examined protecting groups and quickly
found that the Boc protecting group offered the best balance
between reactivity and product purity/separation compared to
N-Ts and N-Tf alternatives. Phenyldisulfide, which partitions to
thiophenol during the course of the reaction,51 was the optimum
H-atom donor for the system and yields were highest when
excess alkene was employed. A brief examination of the reaction
scope demonstrated the promise for this transformation, as
several pyrrolidines were directly isolated (9a−9d) following
TFA deprotection of the initial crude mixture of Boc-protected
adducts. Efforts are underway to expand the scope of this
transformation and explore applications in natural product
synthesis.
In summary, we have developed mild, efficient synthetic
methods to access γ-lactam and pyrrolidine heterocycles through
a photoredox-mediated approach from simple oxidizable alkenes
and unsaturated nucleophiles. The reactions displayed good
functional group compatibility, and deprotection of the initial
adducts to the parent heterocycles was demonstrated. We believe
that these transformations will be of broad use to practitioners of
medicinal chemistry and natural product synthesis.
(16) Campbell, C. L.; Hassler, C.; Ko, S. S.; Voss, M. E.; Guaciaro, M.
A.; Carter, P. H.; Cherney, R. J. J. Org. Chem. 2009, 74, 6368.
(17) Roberson, C. W.; Woerpel, K. A. J. Org. Chem. 1999, 64, 1434.
(18) Jakubec, P.; Helliwell, M.; Dixon, D. J. Org. Lett. 2008, 10, 4267.
(19) Pelletier, S. M.-C.; Ray, P. C.; Dixon, D. J. Org. Lett. 2009, 11,
4512.
(20) Pelletier, S. M.-C.; Ray, P. C.; Dixon, D. J. Org. Lett. 2011, 13,
6406.
(21) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131.
(22) Sun, P.-P.; Chang, M.-Y.; Chiang, M. Y.; Chang, N.-C. Org. Lett.
2003, 5, 1761.
(23) Teng, H.-L.; Luo, F.-L.; Tao, H.-Y.; Wang, C.-J. Org. Lett. 2011,
13, 5600.
(24) Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc.
2007, 129, 14148.
(25) Cochran, B. M.; Michael, F. E. J. Am. Chem. Soc. 2008, 130, 2786.
(26) Hesp, K. D.; Tobisch, S.; Stradiotto, M. J. Am. Chem. Soc. 2010,
132, 413.
(27) Liu, Z.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 1570.
(28) Julian, L. D.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 13813.
(29) Liu, Z.; Yamamichi, H.; Madrahimov, S. T.; Hartwig, J. F. J. Am.
Chem. Soc. 2011, 133, 2772.
(30) Pronin, S. V.; Tabor, M. G.; Jansen, D. J.; Shenvi, R. A. J. Am.
Chem. Soc. 2012, 134, 2012.
(31) Brown, A. R.; Uyeda, C.; Brotherton, C. A.; Jacobsen, E. N. J. Am.
Chem. Soc. 2013, 135, 6747.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and spectroscopic data. This material is
(32) Nguyen, T. M.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135, 9588.
(33) Musacchio, A. J.; Nguyen, L. Q.; Beard, G. H.; Knowles, R. R. J.
Am. Chem. Soc. 2014, 136, 12217.
(34) Shigehisa, H.; Koseki, N.; Shimizu, N.; Fujisawa, M.; Niitsu, M.;
Hiroya, K. J. Am. Chem. Soc. 2014, 136, 13534.
AUTHOR INFORMATION
Corresponding Author
■
(35) Combettes, L. E.; Schuler, M.; Patel, R.; Bonillo, B.; Odell, B.;
Thompson, A. L.; Claridge, T. D. W.; Gouverneur, V. Chem.Eur. J.
2012, 18, 13126.
(36) Corbett, M. T.; Xu, Q.; Johnson, J. S. Org. Lett. 2014, 16, 2362.
(37) Jui, N. T.; Garber, J. A. O.; Finelli, F. G.; MacMillan, D. W. C. J.
Am. Chem. Soc. 2012, 134, 11400.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This research was supported by an NSF-CAREER grant (CHE-
1352490) and the Packard Foundation.
(38) Kafka, F.; Holan, M.; Hidasova,
́ ̌ ́
D.; Pohl, R.; Císarova, I.;
■
Klepetar va, B.; Jahn, U. Angew. Chem., Int. Ed. 2014, 53, 9944.
́ ̌ ́
o
(39) Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2012, 134,
18577.
(40) Perkowski, A. J.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135,
10334.
(41) Nguyen, T. M.; Manohar, N.; Nicewicz, D. A. Angew. Chem., Int.
Ed. 2014, 53, 6198.
(42) Wilger, D. J.; Grandjean, J.-M. M.; Lammert, T. R.; Nicewicz, D.
A. Nat. Chem. 2014, 6, 720.
(43) Grandjean, J.-M. M.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2013,
52, 3967.
(44) Zeller, M. A.; Riener, M.; Nicewicz, D. A. Org. Lett. 2014, 16,
4810.
(45) 2-phenylmalononitrile also resulted in low yields.
(46) Bordwell, F. G.; Zhang, X.-M.; Satish, A. V.; Cheng, J.-P. J. Am.
Chem. Soc. 1994, 116, 6605.
(47) Armstrong, D. A.; Sun, Q.; Schuler, R. H. J. Phys. Chem. 1996, 100,
9892.
REFERENCES
■
(1) Tchissambou, L.; Benechie, M.; Khuong-Huu, F. Tetrahedron
1982, 38, 2687.
(2) Konno, K.; Shirahama, H.; Matsumoto, T. Tetrahedron Lett. 1983,
24, 939.
(3) Maeda, M.; Kodama, T.; Tanaka, T.; Yoshizumi, H.; Takemoto, T.;
Nomoto, K.; Fujita, T. Tetrahedron Lett. 1987, 28, 633.
(4) Qiao, L.; Wang, S.; George, C.; Lewin, N. E.; Blumberg, P. M.;
Kozikowski, A. P. J. Am. Chem. Soc. 1998, 120, 6629.
(5) Spaltenstein, A.; Almond, M. R.; Bock, W. J.; Cleary, D. G.; Furfine,
E. S.; Hazen, R. J.; Kazmierski, W. M.; Salituro, F. G.; Tung, R. D.;
Wright, L. L. Bioorg. Med. Chem. Lett. 2000, 10, 1159.
(6) Guntern, A.; Ioset, J.-R.; Queiroz, E. F.; San
Hostettmann, K. J. Nat. Prod. 2003, 66, 1550.
(7) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46,
8748.
(8) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
(9) Xing, D.; Yang, D. Org. Lett. 2013, 15, 4370.
́
dor, P.; Foggin, C. M.;
(48) Converted to SCE from SHE by subtracting 0.244 V.
(49) Xu, H.-C.; Campbell, J. M.; Moeller, K. D. J. Org. Chem. 2013, 79,
379.
(50) See Supporting Information for additional information.
(51) Romero, N. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2014, 136,
17024.
́
(10) Espinosa-Jalapa, N. A.; Ke, D.; Nebra, N.; Le Goanvic, L.; Mallet-
Ladeira, S.; Monot, J.; Martin-Vaca, B.; Bourissou, D. ACS Catal. 2014,
4, 3605.
(11) Biloski, A. J.; Wood, R. D.; Ganem, B. J. Am. Chem. Soc. 1982, 104,
3233.
(12) Rajendra, G.; Miller, M. J. J. Org. Chem. 1987, 52, 4471.
(13) Boeckman, R. K.; Connell, B. T. J. Am. Chem. Soc. 1995, 117,
12368.
(14) Ma, S.; Xie, H. Tetrahedron 2005, 61, 251.
D
Org. Lett. XXXX, XXX, XXX−XXX