Chem. Soc. 1953, 75, 4458–4461; (f) Risi, C.; Fanton, G.; Pollini,
G. P.; Trapella, C.; Valente, F.; Zanirato, V. Tetrahedron: Asymm.
2008, 19, 131–155; (g) Robertson, D. W.; Krushinski, J. H.;
Fuller, R. W.; Leander, J. D. J. Med. Chem. 1988, 31, 1412–1417;
(h) Liu, D.; Gao, W.; Wang, C.; Zhang, X. Angew. Chem. Int. Ed.
2005, 44, 1687–1689; (i) Afarinkia, K.; Bahar, A. Tetrahedron:
Asymm. 2005, 16, 1239–1287.
At this stage, remarkable features of our methodology are the
facts that it does not involve the use of any catalyst, three new
bonds are formed in sequence during the process and the reaction
proceeds smoothly at room temperature. Moreover, the OH
source for the last step of the process depicted in Scheme 2
corresponded to the H2O (OH-) released from the formation of 9
or 10, respectively. In consequence, the starting compounds 1, 2
and 3 are consumed stoichiometrically in the formation of
products 4 without releasing by-products. These findings are in
agreement with the atomic economy concept providing also an
environmentally friendly character to this three-component
procedure.
4. (a) Yardley, J. P.; Husbands, G. E. M.; Stack, G.; Butch, J.;
Bicksler, J.; Moyer, J. A.; Muth, E. A.; Andree, T.; Fletcher, H.;
James, M. N. G.; Sielecki, A. R. J. Med. Chem. 1990, 33, 2899–
2905; (b) Atlas, D.; Friedman, Z.; Litvin, Y.; Steer, M. L. Br. J.
Pharmac. 1982, 75, 213–217; (c) Scherz, M. W.; Fialeix, M.;
Fischer, J. B.; Reddy, N. L.; Server, A. C.; Sonders, M. S.; Tester,
B. C.; Weber, E.; Wong, S. T.; Keana, J. F. W. J. Med. Chem.
1990, 33, 2421–2429; (d) Gais, H. J.; Greibel, C.; Buschmann, H.
Tetrahedron: Asymm. 2000, 11, 917–928.
In summary, we have implemented an efficient and
straightforward approach for the synthesis of novel and stable β-
amino-N-/O-hemiacetals (γ-aminoalcohols) 4 in good to excellent
yields from an uncatalyzed three-component Mannich-type
reaction at ambient temperature. The fact that all three precursors
(i.e. amine, formaldehyde and alkene), were stoichiometrically
consumed in the course of the reactions and three new bonds (i.e.
C-O, C-N and C-C) were formed in only one-step without
producing by-products, provide an outstanding bond-forming
efficiency and environmentally friendly quality to this approach.
Further studies oriented to increase of the scope of this
methodology (i.e. try with primary amines, superior aldehydes
instead of CH2O and other activated alkenes), as well as, the
variation of the reaction conditions attempting to force the
reaction toward the cyclized benzazepinic systems 5, are
currently in progress.
5. (a) Moss, G. P.; Smith, P. A. S.; Tavernier, D. Pure Appl. Chem.
1995, 67, 1307–1375; (b) Liu, J.; Wong, C-H. Angew. Chem. Int.
Ed.
2002,
41,
1404–1407;
(c)
See:
yklickych%20zlucenin/Prednaska%206/Odporucane%20studijne
%20materialy/Acetaly.pdf; (d) Chiang, Y.; Kresge, J. J. Org.
Chem. 1985, 50, 5038–5040.
6. (a) Meester, W. J. N.; van Maarseveen, J. H.; Schoemaker, H. E.;
Hiemstra, H.; Rutjes, F. P. J. T. Eur. J. Org. Chem. 2003, 2519–
2529; (b) Miller, J. F.; Spaltenstein, A. Tetrahedron Lett. 1996,
37, 2521–2524; (c) Gunaratne, H. Q. N.; Nockemann, P.; Seddon,
K. R. Chem. Commun. 2015, 51, 4455–4457; (d) Vinogradov, V.
M.; Starosotnikov, A. M.; Shevelev, S. A. Mendeleev Commun.
2002, 12, 198–200; (e) See: Cloxotestosterone at:
_EN.htm; (f) Ram, R. N.; Meher, N. K. Tetrahedron, 2002, 58,
2997–3001; (g) Hashimoto, M.; Isono, T.; Mano, K. Ber.
Bunsenges. Phys. Chem. 1994, 98, 793–803; (h) Jensen, R. B.;
Munksgaard, E. C. Acta Chem. Scand. 1964, 18, 1896–1904.
7. (a) Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc. 2003, 125, 338–
339; (b) Matsunaga, S.; Kumagai, N.; Harada, S.; Shibasaki, M. J.
Am. Chem. Soc. 2003, 125, 4712–4713; (c) Juhl, K.; Gathergood,
N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2995–2997;
(d) List, B. J. Am. Chem. Soc. 2000, 122, 9336–9337; (e) List, B.;
Pajarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002,
124, 827–833.
Acknowledgments
Authors thank COLCIENCIAS, Universidad del Valle-Project
No CI-7812, the Spanish “Consejería de Innovación, Ciencia y
Empresa, Junta de Andalucía” the “Centro de Instrumentación
Científico-Técnico de la Universidad de Jaén” and AUIP for
financial support. R.D. acknowledges to CAPES/PNPD
scholarship from Brazilian Ministry of Education (MEC).
8. (a) Chandler, C.; Galzerano, P.; Michrowska, A.; List, B. Angew.
Chem., Int. Ed. 2009, 48, 1978–1980; (b) Dubs, C.; Hamashima,
Y.; Sasamoto, N.; Seidel, T. M.; Suzuki, S.; Hashizume, D.;
Sodeoka, M. J. Org. Chem. 2008, 73, 5859–5871.
9.
(a) Yang, Y. Y.; Shou, W. G.; Wang, Y. G. Tetrahedron 2006,
62, 10079–10086; (b) Shou, W. G.; Yang, Y. Y.; Wang, Y. G.
Tetrahedron Lett. 2006, 47, 1845–1847; (c) Azizi, N.; Torkiyan,
L.; Saidi, M. R. Org. Lett. 2006, 8, 2079–2082.
References and notes
1. For step economy: (a) Wender, P. A.; Verma, V. A.; Paxton, T. J.;
Pillow, T. H. Acc. Chem. Res. 2008, 41, 40–49. For atom
economy: (b) Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705.
For redox economy: (c) Burns, N. Z.; Baran, P. S.; Hoffmann, R.
W. Angew. Chem. Int. Ed. 2009, 48 (16), 2854–2867.
10. Yamashita, Y.; Suzuki, H.; Kobayashi, S. Org. Biomol. Chem.
2012, 10, 5750–5752; (b) Wu, H.; Chen, X. M.; Wan, Y.; Ye, L.;
Xin, H. Q.; Xu, H. H.; Yue, C. H.; Pang, L. L.; Ma, R.; Shi, D. Q.
Tetrahedron Lett. 2009, 50, 1062–1065; (c) Akiyama, T.; Takaya,
J.; Kagoshima, H. Tetrahedron Lett. 2001, 42, 4025–4028.
11. (a) Abonia, R.; Castillo, J.; Insuasty, B.; Quiroga, J.; Nogueras,
M.; Cobo, J. Eur. J. Org. Chem. 2010, 6454–6463; (b) Castillo, J.;
Abonia, R.; Cobo, J.; Glidewell, C. Acta Cryst. 2009, C65, o303–
o310; (c) Abonia, R.; Castillo, J.; Insuasty, B.; Quiroga, J.;
Nogueras, M.; Cobo, J. ACS Comb. Sci. 2013, 15, 2–9.
12. (a) Buolamwini, J. Curr. Pharm. Des. 2000, 6, 379–392; (b)
Luckhurst, C. A.; Ratcliffe, M.; Stein, L.; Furber, M.; Botterell, S.;
Laughton, D.; Tomlinson, W.; Weaver, R.; Chohan, K.; Walding,
A. Bioorg. Med. Chem. Lett. 2011, 21, 531–536; (c) Grunewald,
G. L.; Dahanukar, V. H.; Criscione, K. R. Bioorg. Med. Chem.
Lett. 2001, 9, 1957–1965; (d) Basolo, L.; Beccalli, E. M.; Borsini,
E.; Broggini, G.; Pellegrino, S. Tetrahedron 2008, 64, 8182–8187;
(e) Grunewald, G. L.; Caldwell, T. M.; Dahanukar, V. H.; Jalluri,
R. K.; Criscione, K. R. Bioorg. Med. Chem. Lett. 1999, 9, 481–
486.
2. (a) Dömling, A. in Multicomponent reactions (Eds.: J. Zhu, H.
Bienaymé), Wiley-VCH, Weinheim, 2005, pp. 76–80; (b)
Coquerel, Y.; Boddaert, T.; Presset, M.; Mailhol, D.; Rodriguez, J.
in Ideas in chemistry and molecular sciences: Advances in
synthetic chemistry (Ed.: B. Pignataro), Wiley-VCH, Weinheim,
2010, pp. 187–202; (c) Tietze, L. F.; Brasche, G.; Gericke, K. M.
(Eds.) in Domino reactions in organic synthesis, Wiley-VCH,
Weinheim, 2006, pp. 542–565; (d) Dömling, A. Chem. Rev. 2006,
106, 17–89; (e) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G.
Angew. Chem. Int. Ed. 2006, 45, 7134–7186; (f) Jarusiewicz, J.;
Choe, Y.; Yoo, K. S.; Park, C. P.; Jung, K. W. J. Org. Chem.
2009, 74, 2873–2876; (g) Kumar, A.; Maurya, R. A. Synlett. 2008,
883–885; (h) Ryabukhin, S. V.; Plaskon, A. S.; Ostapchuk, E. N.;
Volochnyuk, D. M.; Tolmachev, A. A. Synthesis 2007, 417–427;
(i) Cordoba, A.; Watanabe, S.; Tanaka, F.; Notz, W.; Barbas, C. F.
J. Am. Chem. Soc. 2002, 124, 1866–1867; (j) Andrade, C. K. Z.;
Takada, S. C. S.; Suarez, P. A. Z.; Alves, M. B. Synlett 2006,
1539–1541; (k) Akritopoulou-Zanze, I.; Gracias, V.; Djuric, S. W.
Tetrahedron Lett. 2004, 45, 8439–8441.
13. Alvarez-Manzaneda, E. J.; Chahboun, R.; Alvarez-Manzaneda, R.;
Cabrera-Torres, E.; Haidour, A.; Ramos, J. Tetrahedron Lett.
2004, 45, 4453–4455.
3. (a) Lait, S. M.; Rankic, D. A.; Keay, B. A. Chem. Rev. 2007, 107,
767–796; (b) Szakonyi, Z.; Gonda, T.; Ötvös, S. B.; Fülöp, F.
Tetrahedron: Asymm. 2014, 25, 1138–1145; (c) Kotland, A.;
Accadbled, F.; Robeyns, K.; Behr, J. B. J. Org. Chem. 2011, 76,
4094–4098; (d) Calvet, G.; Blanchard, N.; Kouklovsky, C. Org.
Lett. 2007, 9, 1485–1488; (e) Pohland, A.; Sullivan, H. R. J. Am.
Supplementary Material
Supplementary data related to this article can be found at
http://