Paper
NJC
one nitrogen atom and the one iodine atom; meanwhile, the ClÀ
ion using C–IÁÁÁCl halogen-bonding results in an interleaved 3-D
network structure of 3. The results of the luminescence properties
reveal that compared with hydrogen-bonding contacts, halogen-
bonding contacts can lead to preservation of the emission intensity
of the ligand in salts 1 and 3, while reducing the emission intensity
in hydrogen-bonding connected salts 2 and 4. This work may
provide a better understanding of the role of halogen-bonding
contacts in tuning the photo-physical properties of organic salts.
G. Terraneo, CrystEngComm, 2011, 13, 6593; (d) R. Liantonio,
P. Metrangolo, T. Pilati, G. Resnati and A. Stevenazzi, Cryst.
Growth Des., 2003, 3, 799; (e) L. Russo, S. Biella, M. Lahtinen,
R. Liantonio, P. Metrangolo, G. Resnati and K. Rissanen, Crys-
tEngComm, 2007, 9, 341.
11 (a) P. Metrangolo and G. Resnati, Chem. – Eur. J., 2001, 7, 2511;
(b) D. E. Barry, C. S. Hawes, S. Blasco and T. Gunnlaugsson,
Cryst. Growth Des., 2016, 5194.
12 A. Crihfield, J. Hartwell, D. Phelps, R. B. Walsh, J. L. Harris,
J. F. Payne, W. T. Pennington and T. W. Hanks, Cryst.
Growth Des., 2003, 3, 313.
Acknowledgements
13 O. S. Bushuyev, T. Friscic and C. J. Barrett, Cryst. Growth
Des., 2016, 16, 541–545.
This research was based on work supported by the Fundamental
Research Funds for the Central Universities (No. 3207047407),
Natural Science Foundation of China (Grant No. 21371031 and
21628101), International S&T Cooperation Program of China (No.
2015DFG42240) and the Priority Academic Program Development
(PAPD) of Jiangsu Higher Education Institutions.
14 (a) M. Carter, A. R. Voth, M. R. Scholfield, B. Rummel, L. C.
Sowers and P. S. Ho, Biochemistry, 2013, 52, 4891; (b) A. R. Voth,
P. Khuu, K. Oishi and P. S. Ho, Nat. Chem., 2009, 1, 74.
15 (a) T. Kusamoto, H. M. Yamamoto and R. Kato, Cryst.
Growth Des., 2013, 13, 4533; (b) T. Imakubo, T. Shirahata,
´
K. Herve and L. Ouahab, J. Mater. Chem., 2005, 16, 162.
16 (a) E. Cariati, A. Forni, S. Biella, P. Metrangolo, F. Meyer,
G. Resnati, S. Righetto, E. Tordina and R. Ugo, Chem.
Commun., 2007, 2590; (b) B. K. Saha, A. Nangia and
J. F. Nicoud, Cryst. Growth Des., 2006, 6, 1278.
17 F. Kniep, S. H. Jungbauer, Q. Zhang, S. M. Walter, S. Schindler,
I. Schnapperelle, E. Herdtweck and S. M. Huber, Angew. Chem.,
Int. Ed., 2013, 52, 7028.
References
1 (a) H. S. Azevedo and I. Pashkuleva, Adv. Drug Delivery Rev.,
2015, 94, 63; (b) Y.-H. Luo, D.-E. Wu, G.-J. Wen, L.-S. Gu,
L. Chen, J.-W. Wang and B.-W. Sun, ChemistrySelect, 2017,
2(1), 614.
18 (a) L. C. Gilday, N. G. White and P. D. Beer, Dalton Trans.,
2013, 42, 15766; (b) B. R. Mullaney, A. L. Thompson and
P. D. Beer, Angew. Chem., Int. Ed., 2014, 53, 11458;
(c) P. Metrangolo, T. Pilati, G. Terraneo, S. Biella and
G. Resnati, CrystEngComm, 2009, 11, 1187.
19 H. L. Nguyen, P. N. Horton, M. B. Hursthouse, A. C. Legon
and D. W. Bruce, J. Am. Chem. Soc., 2004, 126, 16.
20 S. Saha and G. R. Desiraju, J. Am. Chem. Soc., 2017, 139,
1975–1983.
2 (a) J.-W. Wang, Y.-W. Zhang, M.-X. Wang, Y.-H. Luo and
B.-W. Sun, Polyhedron, 2017, 124, 243; (b) Y.-H. Luo, Y. Sun,
Q.-l. Liu, L.-J. Yang, G.-J. Wen, M.-X. Wang and B.-W. Sun,
ChemistrySelect, 2016, 1(13), 3879.
3 (a) A. Alshammari, M. G. Posner, A. Upadhyay, F. Marken,
S. Bagby and A. Ilie, ACS Appl. Mater. Interfaces, 2016,
8(32), 21077; (b) D. Quinonero, I. Alkorta and J. Elguero, Phys.
Chem. Chem. Phys., 2016, 18(40), 27939; (c) G. Kawaguchi,
M. Maesato, T. Komatsu, T. Imakubo, A. Kiswandhi, D. Graf
and H. Kitagawa, Chem. Mater., 2016, 28(20), 7276.
4 (a) Y.-H. Luo, J.-W. Wang, C. Chen, Y.-J. Li and B.-W. Sun,
Cryst. Growth Des., 2017, 17, 2576; (b) R. S. Mulliken and
W. B. Person, Molecular Complexes: A Lecture and Reprint
Volume, Wiley-Interscience, New York, 1969.
21 C. Bosshard, M. S. Wong, F. Pan, P. Ggnter and V. Gramlich,
Adv. Mater., 1997, 9, 554.
22 (a) B. Belghoul, I. Welterlich, A. Maier, A. Toutianoush,
A. R. Rabindranath and B. Tieke, Langmuir, 2007, 23, 5062;
(b) P. L. Zhao, P. Chen, Q. Li, M. J. Hu, P. C. Diao, E. S. Pan
and W. W. You, Bioorg. Med. Chem. Lett., 2016, 26, 3679.
23 P. S. Hariharan and S. P. Anthony, Anal. Chim. Acta, 2014, 848, 74.
24 H. Yuan, Q. Q. Li, H. Li, Q. N. Guo, Y. G. Lu and Z. Y. Li,
Dalton Trans., 2010, 39, 11344.
5 R. S. Mulliken, Spectroscopy, Molecular Orbitals, and
Chemical Bonding.
6 O. Hassel, Structural Aspects of Interatomic Charge-Transfer
Bonding.
25 H. D. Bian, W. Gu, J. Y. Xu, F. Bian, S. P. Yan, D. Z. Liao,
Z. H. Jiang and P. Cheng, Inorg. Chem., 2003, 42, 4265.
7 (a) Y.-H. Luo, J.-W. Wang, Y.-J. Li, C. Chen, P.-J. An,
S.-L. Wang, C.-Q. You and B.-W. Sun, CrystEngComm, 2017,
19(24), 3362–3369; (b) F. Guthrie, J. Chem. Soc., 1863, 16,
239–244.
8 A. Priimagi, G. Cavallo, P. Metrangolo and G. Resnati, Acc.
Chem. Res., 2013, 46, 2686–2695.
9 G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi,
G. Resnati and G. Terraneo, Chem. Rev., 2016, 116, 2478–2601.
10 (a) N. K. Beyeh, M. Cetina and K. Rissanen, Chem. Commun.,
2014, 50, 1959; (b) L. Turunen, N. K. Beyeh, F. Pan,
A. Valkonen and K. Rissanen, Chem. Commun., 2014, 50, 15920;
(c) P. Metrangolo, J. S. Murray, T. Pilati, P. Politzer, G. Resnati and
˜
´
26 C. Nu´nez, C. Silva Lopez, O. N. Faza, F. L. Javier, M. Diniz,
R. Bastida, J. L. Capelo and C. Lodeiro, J. Biol. Inorg. Chem.,
2013, 18, 679.
27 (a) Y. H. Luo, L. J. Yang, Q. L. Liu, Y. Ling, Y. Sun,
J. W. Wang, C. Q. You and B. W. Sun, J. Mater. Chem. C,
2016, 4, 8061; (b) Y. H. Luo, M. Nihei, G. J. Wen, B. W. Sun
and H. Oshio, Inorg. Chem., 2016, 55, 8147.
28 Yarnton, Oxfordshire. Agilent Technologies (formerly
Oxford Diffraction). England, 2012.
29 G. M. Sheldrick, Acta Crystallogr., 2015, 3, C71.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017