Navarro et al.
played a significant role in this regard. Although the vast
majority of palladacycles reported to date contain phosphines,
especially bulky tertiary and secondary phosphines, as ancillary
ligands to stabilize the palladium center,2 the costly price usually
associated with this phosphine type, along with phosphine ligand
and ligand decomposition byproduct removal difficulties, have
led to the use of N-heterocyclic carbenes (NHCs)3 as a very
attractive ligand alternative.4 We have reported preliminary
results on the very efficient performance of such palladacyclic
complexes as precatalysts in aryl amination reactions and
R-ketone arylation reactions of aryl chlorides and triflates.5
Later, we reported on the use of 1 in room temperature Suzuki-
Miyaura reactions.6 Herein, we expand the substrate scope of 1
for the R-ketone arylation and the Suzuki-Miyaura reaction
and also report on the use of this complex as an active
precatalyst for the dehalogenation of aryl chlorides at room
temperature.
reaction conditions, and organoboron reagents have been
developed by a number of research groups. Nowadays, the
method is routinely employed in retrosynthetic schemes, and a
large number of drugs,10 polymers,11 and natural products12
make use of a Suzuki-Miyaura cross-coupling step in their
assembly. Pioneering work in the use of palladacycles for the
Suzuki-Miyaura reaction was performed by Herrmann and co-
workers using a phosphine-bearing palladacycle in the coupling
of activated chlorides with precatalyst loadings of 0.1 mol %.13
Good activity is not limited to phosphorus donor systems14,15
because N-donor,16,17 oxime-containing,18 and S-donor19 pal-
ladacycles have also been described with good results. Tertiary
phosphine adducts of phosphorus-, imine-, and amine-based
palladacycles20,21 show excellent activity at very low catalyst
loadings when aryl chlorides, both activated and unactivated,
are used as substrates. Our group reported on the activity of
the NHC-bearing palladacycle 1 for the Suzuki-Miyaura cross-
coupling of sterically hindered unactivated aryl chlorides with
sterically hindered boronic acids, allowing for the synthesis in
high yields of di- and tri-ortho-substituted biaryls at room
(10) (a) References 8b-d. (b) Chemler, S. R.; Trauner, D.; Danishefsky,
S. J. Angew. Chem., Int. Ed. 2001, 40, 4544-4568. (c) Konno, T.; Daitoh,
T.; Noiri, A.; Chae, J.; Ishihara, T.; Yamanaka, H. Org. Lett. 2004, 6, 933-
936.
(11) (a) Yamamoto, T.; Kobayashi, K.; Yasuda, T.; Zhou, Z.-H.;
Yamaguchi, I.; Ishikawa, T.; Koshihara, S. Polym. Bull. 2004, 52, 315-
319. (b) Bo, Z.; Qiu, J.; Li, J.; Schlueter, A. D. Org. Lett. 2004, 6, 667-
669. (c) Beinhoff, M.; Karakaya, B.; Schluter, A. D. Synthesis 2003, 79-
90. (d) Yamaguchi, S.; Goto, T.; Tamao, K. Angew. Chem., Int. Ed. 2000,
39, 1695-1697.
(12) (a) Lin, S.; Yang, Z.-Q.; Kwok, B. H. B.; Koldobskiy, M.; Crews,
C. M.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 6347-6355. (b)
Yuan, Y.; Men, H.; Lee, C. J. Am. Chem. Soc. 2004, 126, 14720-14721.
(c) Suzuki, T.; Usui, K.; Miyake, Y.; Namikoshi, M.; Nakada, M. Org.
Lett. 2004, 6, 553-556. (d) Tsukano, C.; Sasaki, M. J. Am. Chem. Soc.
2003, 125, 14294-14295. (e) Miyashita, K.; Sakai, T.; Imanishi, T. Org.
Lett. 2003, 5, 2683-2686. (f) Fuwa, H.; Kainuma, N.; Tachibana, K.; Sasaki,
M. J. Am. Chem. Soc. 2002, 124, 14983-14992. (g) Mandal, A. K. Org.
Lett. 2002, 4, 2043-2045. (h) Sasaki, M.; Fuwa, H. Synlett 2004, 1851-
1874.
FIGURE 1. NHC-bearing palladacycles.
Results and Discussion
Suzuki-Miyaura Cross-Coupling Reactions. Since its
discovery in 1979,7 the Suzuki-Miyaura reaction8 involving
the coupling of organoboron reagents with organic halides has
widened its scope, becoming arguably one of the most important
transformations leading to the formation of a C-C bond. One
major reason is that organoboron reagents show many advan-
tages,9 for example, (1) ready availability of reagents by
hydroboration and transmetalation, (2) inert to water and related
solvents, as well as oxygen, (3) generally thermally stable, (4)
tolerant toward various functional groups, and (5) low toxicity
of starting materials and byproducts. A plethora of new catalysts,
(13) Beller, M.; Fischer, H.; Herrmann, W. A.; O¨ fele, K.; Brossmer, C.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1848-1849.
(14) (a) Bedford, R. B.; Draper, S. M.; Scully, P. N.; Weilch, S. L. New
J. Chem. 2000, 24, 745-747. (b) Albisson, D. A.; Bedford, R. B.; Lawrence,
S. E.; Scully, P. N. Chem. Commun. 1998, 2095-2096. (c) Bedford, R. B.;
Welch, S. L. Chem. Commun. 2001, 129-130. (d) Bedford, R. B.;
Hazelwood, S. L.; Limmert, M. E.; Albisson, D. A.; Draper, S. M.; Scully,
P. N.; Coles, S. J.; Hursthouse, M. B. Chem.sEur. J. 2003, 9, 3216-3227.
(e) Bedford, R. B.; Hazelwood, S. L.; Horton, P. N.; Hursthouse, M. B.
Dalton Trans. 2003, 4164-4174.
(15) Gibson, S.; Foster, D. F.; Eastman, G. R.; Tooze, R. P.; Cole-
Hamilton, D. J. Chem. Commun. 2001, 779-780.
(2) (a) Bedford, R.; Cazin, C. S. J.; Hursthose, M. B.; Light, M. E.;
Scordia, V. J. M. Dalton Trans. 2004, 3864-3868. (b) Bedford, R.; Cazin,
C. S. J.; Holder, D. Coord. Chem. ReV. 2004, 248, 2283-2321. (c) Bedford,
R. B. Chem. Commun. 2003, 1787-1796. (d) Nettekoven, U.; Naud, F.;
Schnyder, A.; Blaser, H.-U. Synlett 2004, 2549-2552.
(3) (a) Arduengo, A. J., III; Rasika Dias, H. V.; Harlow, R. L.; Kine, M.
J. Am. Chem. Soc. 1992, 114, 5530-5534. (b) Regitz, M. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 725-728. (c) Arduengo, A. J., III; Krafczyc, R.
Chem. -Ztg. 1998, 32, 6-14.
(4) (a) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005, 1815-
1828. (b) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290-1309.
(5) Viciu, M. S.; Kelly, R. A., III; Stevens, E. D.; Naud, F.; Studer, M.;
Nolan, S. P. Org. Lett. 2003, 5, 1479-1482.
(16) (a) Albisson, D. A.; Bedford, R. B.; Scully, P. N. Tetrahedron Lett.
1998, 39, 9793-9796. (b) Iyer, S.; Ramesh, C. Tetrahedron Lett. 2000,
41, 8981-8984. (c) Beletskaya, I. P.; Kashin, A. N.; Karslted, N. B.; Mitin,
A. V.; Cheprakov, A. V.; Kazankov, G. M. J. Organomet. Chem. 2001,
622, 89-96. (d) Yang, F.; Zhang, Y.; Zheng, R.; Tie, J.; He, M. J.
Organomet. Chem. 2002, 651, 146-148.
(17) Weissman, H.; Milstein, D. Chem. Commun. 1999, 1901-1902.
(18) (a) Alonso, D. A.; Na´jera, C.; Pacheco, M. C. J. Org. Chem. 2002,
67, 5588-5594. (b) Botella, L.; Na´jera, C. Angew. Chem., Int. Ed. 2002,
41, 179-181. (c) Botella, L.; Na´jera, C. J. Organomet. Chem. 2002, 663,
46-57. (d) Alonso, D. A.; Botella, L.; Na´jera, C.; Pacheco, M. C. Synthesis
2004, 1713-1718.
(19) Zim, D.; Gruber, A. S.; Ebeling, G.; Dupont, J.; Monteiro, A. L.
Org. Lett. 2000, 2, 2881-2884.
(20) (a) Bedford, R. B.; Cazin, C. S. J. Chem. Commun. 2001, 1540-
1541. (b) Bedford, R. B.; Cazin, C. S. J.; Coles, S. J.; Gelbrich, T.; Horton,
P. N.; Hurtshouse, M. B.; Light, M. E. Organometallics 2003, 22, 987-
999.
(6) Navarro, O.; Kelly, R. A., III; Nolan, S. P. J. Am. Chem. Soc. 2003,
125, 16194-16195.
(7) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36,
3437-3439.
(8) For reviews, see: (a) Suzuki, A. J. Organomet. Chem. 1999, 576,
147-168. (b) Miyaura, N. Top. Curr. Chem. 2002, 219, 11-59. (c) Kotha,
S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633-9695. (d) For a
recent review covering up to March 2004: Bellina, F.; Carpita, A.; Rossi,
R. Synthesis 2004, 15, 2419-2440.
(21) (a) Bedford, R. B.; Cazin, C. S. J.; Hazelwood, S. L. Angew. Chem.,
Int. Ed. 2002, 41, 4120-4122. (b) Bedford, R. B.; Cazin, C. S. J.;
Hazelwood, S. L. Chem. Commun. 2002, 2608-2609. (c) Bedford, R. B.;
Hazelwood, S. L.; Limmert, M. E. Chem. Commun. 2002, 2610-2611.
(9) Suzuki, A. J. Organomet. Chem. 2002, 653, 83-90.
686 J. Org. Chem., Vol. 71, No. 2, 2006