COMMUNICATIONS
[6] b-Peptides: a) D. Seebach, J. L. Matthews, Chem. Commun. 1997, 21,
2015 ± 2022; b) S. H. Gellman, Acc. Chem. Res. 1998, 31, 173 ± 180; g-
peptides: c) T. Hintermann, K. Gademann, B. Jaun, D. Seebach, Helv.
Chim. Acta 1998, 81, 983 ± 1002; d) S. Hanessian, X. L. Luo, R.
Schaum, S. Michnick, J. Am. Chem. Soc. 1998, 120, 8569 ± 8570.
[7] As opposed to their b- and g-counterparts, d-peptides should
generally interact easily with the ªnaturalº a-peptide world. In
essence, the a-peptides form a subset of all possible d-peptides.
Examples for d-peptides can be found in: a) U. Koert, J. Prakt. Chem.
2000, 342, 325 ± 333; b) F. Machetti, A. Ferrali, G. Menchi, E. G.
Occhiato, A. Guarna, Org. Lett. 2000, 2, 3987 ± 3990, and references
therein.
channels. Synthetic compound 2 shows a more than threefold
increase in NH4 /K selectivity compared to gA. The X-ray
crystal structure analysis of dimer 9 (Figure 2) gives a hint of
the role of d-AA 1 in the channel:[20] The d-peptide 9 adopts
[8] a) D. Doyle, J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L.
Cohen, B. T. Chait, R. MacKinnon, Science 1998, 280, 69 ± 77; b) C.
Toyoshima, M. Nakasako, H. Nomura, H. Ogawa, Nature 2000, 405,
647 ± 655; c) R. R. Ketchem, B. Roux, T. A. Cross, J. Biomol. NMR
1996, 8, 1 ± 14.
[9] Modifications of the sequence and terminal groups of gramicidin A
are well studied: a) P. Läuger, Angew. Chem. 1985, 97, 939 ± 959;
Angew. Chem. Int. Ed. Engl. 1985, 24, 905 ± 925; b) C. J. Stankovic,
S. L. Schreiber, Chemtracts: Org. Chem. 1991, 4, 1 ± 19; c) R. E.
Koeppe II, O. S. Andersen, Annu. Rev. Biophys. Biomol. Struct. 1996,
25, 231 ± 258; d) V. Borisenko, D. C. Burns, Z. Zhang, G. A. Woolley, J.
Am. Chem. Soc. 2000, 122, 6364 ± 6370. The state of research in the
field is presented in Gramicidin and Related Ion Channel-Forming
Peptides (Eds.: D. J. Chadwick, G. Cardew), Wiley, Chichester, 1999.
[10] THF-d-AAs give functional ion channels: A. Schrey, A. Vescovi, A.
Knoll, C. Rickert, U. Koert, Angew. Chem. 2000, 112, 928 ± 931;
Angew. Chem. Int. Ed. 2000, 39, 900 ± 902.
[11] Short minigramicidins from the terminal 11-mer of gA form ion
channels dependent on membrane thickness: H.-D. Arndt, A. Knoll,
U. Koert, ChemBioChem 2001, 2, 221 ± 223.
[12] S. E. Schaus, J. F. Larrow, E. N. Jacobsen, J. Org. Chem. 1997, 62,
4197 ± 4199.
Figure 2. X-ray crystal structure analysis of d-dipeptide 9 (ellipsoids with
50% probability). Selected distances [pm]: N4-O1 256.3(6), N4-O4
315.8(7). Please note the right-handed helical conformation (N1-O1-N4-
O3-O5).
the conformation of a right-handed helix in the solid state.
Thus, it should be ideally suited to propagate the right-handed
b6.3-helices of the d,l-peptide segments in their ion-conduct-
ing conformation.[8c, 11] The central bifurcated hydrogen bond
has to open to allow ions to pass vertically in the plane of
display. Such ªgatingº could account for the dwell times,
which are short compared with known examples.[9b, 11, 19]
[13] M. Pietraszkiewicz, J. Jurczak, Tetrahedron 1984, 40, 2967 ± 2970.
[14] All new compounds were characterized by NMR spectroscopy,
HPLC, elemental analysis, or HR-EI/HR-MALDI-TOF/ESI mass
spectrometry (see Supporting Information). For ion-channel analysis
all compounds were purified by repetitive semipreparative HPLC
(C8, CH3CN/iPrOH/H2O).
Received: December 18, 2000 [Z16287]
[15] P. Mueller, D. Rudin, Nature 1968, 217, 713 ± 719.
[16] We could not find evidence for anion conductivity. Variation of the
[1] a) E. Neher, B. Sakmann, Nature 1976, 260, 779 ± 802; b) B. Hille,
Ionic Channels of Excitable Membranes, 2nd ed., Sinauer, Sunderland,
1992.
[2] a) B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Os-
man, B. Raguse, L. Wieczorek, R. J. Pace, Nature 1997, 387, 580 ± 583;
b) M. Akeson, D. Branton, J. J. Kasianowicz, E. Brandin, D. W.
Deamer, Biophys. J. 1999, 77, 3227 ± 3233; c) H. Bayley, C. R. Martin,
Chem. Rev. 2000, 100, 2575 ± 2594.
[3] Reviews on artificial ion channels: a) Y. Kobuke in Advances in
Supramolecular Chemistry, Vol. 4 (Ed.: G. W. Gokel), JAI, Green-
wich, 1997, pp. 163 ± 210; b) N. Voyer, Top. Curr. Chem. 1996, 184, 1 ±
37; c) G. W. Gokel, O. Murillo, Acc. Chem. Res. 1996, 29, 425 ± 432;
recent contributions: d) B. Baumeister, N. Sakai, S. Matile, Angew.
Chem. 2000, 112, 2031 ± 2034; Angew. Chem. Int. Ed. 2000, 39, 1955 ±
1958; e) N. Yoshino, A. Satake, Y. Kobuke, Angew. Chem. 2001, 113,
471 ± 473; Angew. Chem. Int. Ed. 2001, 40, 457 ± 459; f) ref. [10], and
references therein.
[4] a) Y. Tanaka, Y. Kobuke, M. Sokabe, Angew. Chem. 1995, 107, 717 ±
719; Angew. Chem. Int. Ed. Engl. 1995, 34, 693 ± 694; b) T. M. Fyles, D.
Loock, W. F. van Straaten-Nijenhuis, X. Zhou, J. Org. Chem. 1996, 61,
8866 ± 8874; c) M. M. Tedesco, B. Ghebremariam, N. Sakai, S. Matile,
Angew. Chem. 1999, 111, 523 ± 526; Angew. Chem. Int. Ed. 1999, 38,
540 ± 543; d) S. Das, U. D. Lengweiler, D. Seebach, R. N. Reusch,
Proc. Natl. Acad. Sci. USA 1997, 94, 9075 ± 9079; e) T. Renkes, H. J.
Schäfer, P. M. Siemens, E. Neumann, Angew. Chem. 2000, 112, 2566 ±
2570; Angew. Chem. Int. Ed. 2000, 39, 2512 ± 2516.
2
anion (Cl /SO4 ) did not affect the reversal potentials.
[17] Distinct proton-channel activity was only observed at high concen-
trations, which could indicate that aggregates of these compounds
form the active channels. This possibility is under active investigation.
[18] The bulk of the hydration shell of an ion is stripped off on entering the
gA channel.[9] A comparison of the changed selectivities with the
effective ionic radii[1b] reveals that particularly the smaller, harder
cations pass the novel channel 2 more slowly (effective ionic radii are
given in parentheses): Li (60 pm) < Na (95 pm) < K (133 pm) <
Rb (148 pm) ꢁ NH4 (150 pm) < Cs (169 pm).
[19] gA proton channels are long lived: S. Cukierman, E. P. Quigley, D. S.
Crumrine, Biophys. J. 1997, 73, 2489 ± 2502.
[20] Crystallographic data (excluding structure factors) for the structure
reported in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication no.
CCDC-154390. Copies of the data can be obtained free of charge on
application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax:
(44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
[5] a) C. J. Stankovic, S. H. Heinemann, S. L. Schreiber, Biochim. Bio-
phys. Acta 1991, 1061, 163 ± 170; b) G. A. Woolley, V. Zunic, J.
Karanicolas, A. S. I. Jaikaran, A. V. Starostin, Biophys. J. 1997, 73,
2465 ± 2475; c) T. M. Fyles, D. Loock, X. Zhou, J. Am. Chem. Soc.
1998, 120, 2997 ± 3003.
2078
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4011-2078 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 11