or isocyanates.10 These approaches have been demonstrated
to be particularly efficient for symmetrical ureas. However,
phosgene and isocyanates are toxic, unstable, and expensive
to handle. In this regard, direct utilization of in situ formed
isocyanates represents an attractive strategy toward efficient
synthesis of ureas, especially more challenging unsymmetri-
cally substituted ureas.1a,11
Scheme 2. Initial Investigation
In our research on the synthetic potential of R,R-disub-
stituted ꢀ-ketoamides12 bearing both electrophilic and nu-
cleophilic centers toward various carbo- and heterocycles,13
we presented the amine-mediated ring-opening reactions of
doubly EWG-activated cyclopropanes and subsequent recy-
clization, which afford fully functionalized pyridin-2(1H)-
ones.13a In our continued work, the reaction of 1-acetyl-1-
carbamoyl cyclopropane (1a) with L-proline was explored
(Scheme 2). To our surprise, the expected ring-opening
product 4 was not observed. Instead, an unsymmetric N-aryl
urea14,15 was achieved in high efficiency, which provides a
straightforward, simple, and efficient synthesis of unsym-
metrically substituted ureas via in situ formation of isocy-
anates.16 A careful literature search revealed that reactions
of acetoacetanilides and primary amines have been reported
by Bigi et al.17 It was noteworthy that, in their reactions,
the reaction conditions require high temperatures (180 °C)
and a zeolite catalyst, and only symmetric N,N′-dialkyl17a
(aryl17b) ureas were prepared (eq 1). By contrast, a catalyst-
free reaction of acetoacetanilides and primary/secondary
amines was developed under milder conditions in our work
(eq 2). Herein, we wish to communicate the results.
(6) Matzen, L.; van Amsterdam, C.; Rautenberg, W.; Greiner, H. E.;
Harting, J.; Seyfried, C. A.; Bo¨ttcher, H. J. Med. Chem. 2000, 43, 1149.
(7) Wilhelm, S. M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.;
Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath,
J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.; Adnane, L.; Lynch, M.;
Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky, A.; Riedl, B.; Post, L. E.;
Bollag, G.; Trail1, P. A. Cancer Res. 2004, 64, 7099.
(8) (a) Babad, H.; Zeiler, A. G. Chem. ReV. 1973, 73, 75. (b) Smith,
M. B.; March, J. March’s AdVanced Organic Chemistry: Reactions,
Mechanisms, and Structure, 5th ed; Wiley: New York, 2001; p 1191; (c)
Kno¨lker, H.-J.; Braxmeier, T.; Schlechtingen, G. Angew. Chem., Int. Ed.
Engl. 1995, 34, 2497.
Initially, optimization of the reaction conditions was con-
ducted (Table 1). It was found that both the solvent and
(9) Majer, P.; Randad, R. S. J. Org. Chem. 1994, 59, 1937.
(10) The reaction of isocyanates with various nucleophiles has been
extensively reported in the literature, see: (a) Ozaki, S. Chem. ReV. 1972,
72, 457. (b) Braunstein, P.; Nobel, D. Chem. ReV. 1989, 89, 1927. For the
utilization of isocyanate towards the synthesis of eight-membered cyclic
ureas via [6 + 2] cycloaddition, reaction with 2-vinylazetidines has been
reported. See: (c) Koya, S.; Yamanoi, K.; Yamasaki, R.; Azumaya, I.; Masu,
H.; Saito, S. Org. Lett. 2009, 11, 5438. For the reaction of isocyanatobenzene
with lithiated chiral diamine towards chiral ureas, see: (d) Ko¨hn, U.; Gu¨nther,
W.; Go¨rls, H.; Andersa, E. Tetrahedron: Asymmetry 2004, 15, 1419.
(11) For recent examples for the preparation of ureas via in situ formation
of isocyanate, see: (a) Lebel, H.; Leogane, O. Org. Lett. 2006, 8, 57170.
(b) Dube´, P.; Noah, F.; Nathel, F.; Vetelino, M.; Couturier, M.; Aboussafy,
C. L.; Pichette, S.; Jorgensen, M. L.; Hardink, M. Org. Lett. 2009, 11, 5622.
(c) Peterson, S. L.; Stucka, S. M.; Dinsmore, C. J. Org. Lett. 2010, 12,
Table 1. Optimization of the Reaction Conditionsa
entry
2a (equiv)
solvent
t (°C)
time (h)
yield (%)b
1
2
3
4
5
6
7
2.2
2.2
2.2
1.2
1.2
1.2
1.2
CH2Cl2
THF
xylene
xylene
toluene
DMF
rt
60
120
120
115
120
100
8
8
3.5
3.5
3.5
7
0
0
92
92
90
trace
0
1340
.
(12) For selected representative reactions from ꢀ-ketoamides, see: (a)
Jiang, B.; Tu, S.-J.; Kaur, P.; Wever, W.; Li, G. J. Am. Chem. Soc. 2009,
131, 11660. (b) Lie´by-Muller, F.; Constantieux, T.; Rodriguez, J. J. Am.
Chem. Soc. 2005, 127, 17176. (c) Zhou, C.-Y.; Che, C.-M. J. Am. Chem.
Soc. 2007, 129, 5828. (d) Xiang, D.; Wang, K.; Liang, Y.; Zhou, G.; Dong,
D. Org. Lett. 2008, 10, 345. (e) Lu, B.; Ma, D. Org. Lett. 2006, 8, 6115.
(f) Ramanjulu, J. M.; DeMartino, M. P.; Lan, Y.; Marquis, R. Org. Lett.
2010, 12, 2270.
H2O
8
a Reactions were carried out on a 1.0 mmol scale in 2 mL of solvent.
b Yield of isolated product.
(13) (a) Liang, F.; Cheng, X.; Liu, J.; Liu, Q. Chem. Commun. 2009,
3636. (b) Cheng, X.; Liang, F.; Shi, F.; Zhang, L.; Liu, Q. Org. Lett. 2009,
11, 93. (c) Li, Y.; Liang, F.; Bi, X.; Liu, Q. J. Org. Chem. 2006, 71, 8006.
(d) Zhao, L.; Liang, F.; Bi, X.; Sun, S.; Liu, Q. J. Org. Chem. 2006, 71,
1094.
temperature have a large effect on the reaction. Whether at room
temperature in CH2Cl2 or at 60 °C in THF for 8 h, the reactions
of acetoacetanilide 1a and L-proline 2a (2.2 equiv) could not
give satisfactory results (entries 1 and 2). To our delight, at
120 °C in xylene (2.0 mL) for 3.5 h, the reaction of acetoac-
(14) For N-aryl urea preparation: Lukin, K. A.; Hsu, M. C.; Fernando,
D. P.; Kotecki, B. J.; Leanna, M. R. U.S. Pat. Appl.US2007244178
.
(15) More recently, ortho-directed C-H bond activation and cross-
coupling of aryl ureas have emerged. For representative examples, see: (a)
Nishikata, T.; Abela, A. R.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2010,
49, 781. (b) Nishikata, T.; Abela, A. R.; Huang, S.; Lipshutz, B. H. J. Am.
Chem. Soc. 2010, 132, 4978. (c) Houlden, C. E.; Hutchby, M.; Bailey, C. D.;
Gair Ford, J.; Tyler, S. N. G.; Gagne´, M. R.; Lloyd-Jones, G. C.; Booker-
(16) Examples for the formation of isocyanates from amides under Pd
catalysis, see: (a) Furata, T.; Kitamura, Y.; Hashimoto, A.; Fujii, S.; Tanaka,
K.; Kan, T. Org. Lett. 2007, 9, 183. (b) Donati, L.; Michel, S.; Tillequin,
F.; Poree´, F.-H. Org. Lett. 2010, 11, 156.
Milburn, K. I. Angew. Chem., Int. Ed. 2009, 48, 1830
.
Org. Lett., Vol. 12, No. 19, 2010
4221