5
21. Hernández, J. G.; Friščić, T., Tetrahedron Lett. 2015, 56, 4253-
4265.
22. Do, J.-L.; Friscic, T., ACS Central Sci. 2017, 3, 13-19.
23. Andersen, J.; Mack, J., Green Chem. 2018, 20, 1435-1443.
In summery, we have found that using HSBM, combining
sulfate salts with certain amount of crystal waters and P2O5 can
successfully convert arenes to diarylsulfones. Among a variety of
sulfate salts tested, 3CdSO4·xH2O gives the best results. This
method is facile and eco-friendly and exhibits advantages in terms
of safety and easier operation. We suggest H2SO4 We suggest
H2SO4 generated in situ from the reaction of the sulfate salts with
P2O5, could perform the aromatic sulfonation with arene to
produce aryl sulfonic acid. The aryl sulfonic acid thus formed
could conduct further electrophilic substitution reaction with
another arene to give diarylsulfone.
24. Howard, J. L.; Cao, Q.; Browne, D. L., Chem. Sci. 2018, 9, 3080-
3094.
25. Zhao, S.; Li, Y.; Liu, C.; Zhao, Y., Tetrahedron Lett. 2018, 59,
317-324.
26. Friscic, T.; Mottillo, C.; Titi, H. M., Angew. Chem. Int. Ed.,
10.1002/anie.201906755.
27. Li, X. L.; Liu, L. Q.; Qin, Y. J.; Wu, W.; Guo, Z. X.; Dai, L. M.;
Zhu, D. B., Chem. Phys. Lett. 2003, 377, 32-36.
28. Pan, H. L.; Liu, L. Q.; Guo, Z. X.; Dai, L. M.; Zhang, F. S.; Zhu,
D. B.; Czerw, R.; Carroll, D. L., Nano Lett. 2003, 3, 29-32.
29. Zhang, P.; Pan, H. L.; Liu, D. F.; Guo, Z. X.; Zhang, F. S.; Zhu,
D. B., Synth. Commun. 2003, 33, 2469-2474.
Acknowledgments
30. Guo, F.-C.; Ji, M.-Z.; Zhang, P.; Guo, Z.-X., Green Process.
Synth. 2018, 7, 453-459.
31. Ji, M.-Z.; Guo, F.-C.; Zhang, P.; Guo, Z.-X., Fuller. Nanotub.
Carbon Nanostruct. 2018, 26, 487-490.
We thank Prof. Zi-li Chen of Department of Chemistry, Renmin
University of China for valuable suggestion.
32. Gu, Z.-Z.; Guo, F.-C.; Zhang, P.; Qin, Y.-J.; Guo, Z.-X.,
Tetrahedron Lett. 2019, 60, 1687-1690.
References and notes
33. Su, W.; Yu, J.; Li, Z.; Jiang, Z., J. Org. Chem. 2011, 76, 9144-
9150.
1.
2.
3.
Patai, S., Rappopot, Z.; Stirling, C., The Chemistry of Sulphones
and Sulphoxides, John Wiley & Sons: Chichester, 1988.
Liu, N.W.; Liang, S.; Manolikakes, G., Synthesis 2016, 48, 1939-
1973.
Shaaban, S.; Liang, S.; Liu, N. W.; Manolikakes, G., Org. Biomol.
Chem. 2017, 15, 1947-1955.
34. Stolle, A. Technical Implications of Organic Syntheses in Ball
Mills. In Ball Milling Towards Green Synthesis: Applications,
Projects, Challenges; RSC Green Chemistry Series 31; Stolle, A.,
Ranu, B. C., Eds.; Royal Society of Chemistry: Cambridge, U.K.,
2015; pp 241−271.
4.
5.
Li, Y.; Fan, Y., Synth. Commun., 0.1080/00397911.2019.1656747.
Trost, B. M.; Kalnmals, C. A., Chem. Eur. J. 2019, 25, 11193-
11213.
Repichet, S.; Roux, C. L.; Hernandez, P.; Dubac, J., J. Org. Chem.
1999, 64, 6479-6482.
Nara, S. J.; Harjani, J. R.; Salunkhe, M. M., J. Org. Chem. 2001,
66, 8616-8620.
Alizadeh, A.; Khodaei, M. M.; Nazari, E., Tetrahedron Lett. 2007,
48, 6805-6808.
35. Schmidt, R.; Martin Scholze, H.; Stolle, A., Int. J. Ind. Chem.
2016, 7, 181-186.
36. Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopfe, W., ChemSusChem
2010, 3, 1181-1191.
37. Paveglio, G. C.; Longhi, K.; Moreira, D. N.; Muenchen, T. S.;
Tier, A. Z.; Gindri, I. M.; Bender, C. R.; Frizzo, C. P.; Zanatta, N.;
Bonacorso, H. G.; Martins, M. A. P., ACS Sustain. Chem. Eng.
2014, 2, 1895-1901
38. Schmidt, R.; Burmeister, C. F.; Balaz, M.; Kwade, A.; Stolle, A.,
Org. Process Res. Dev. 2015, 19, 427-436
39. Yu, J.-B.; Peng, G.; Jiang, Z.-J.; Hong, Z.-K.; Su, W.-K., Eur. J.
Org. Chem. 2016, 2016, 5340-5344.
40. Yu, J.; Zhang, C.; Yang, X.; Su, W., Org. Biomol. Chem. 2019,
17, 4446-4451.
41. Hans Cerfontain, T.; Koeberg-Telder, A.; Laali, K.; Lambrechts,
H. J. A.; de Wit, P., Rec. J. Royal Neth. Chem. Soc. 1982, 101,
390-392.
42. Laha, J. K.; Sharma, S., ACS Omega 2018, 3, 4860-4870.
43. He, Z.; Honeycutt, C. W.; Xing, B.; McDowell, R. W.; Pellechia,
P. J.; Zhang, T., Soil Sci. 2007, 172, 501-515.
6.
7.
8.
9.
Bahrami, K.; Khodei, M. M.; Shahbazi, F., Tetrahedron Lett.
2008, 49, 3931-3934.
10. de Noronha, R. G.; Fernandes, A. C.; Romão, C. C., Tetrahedron
Lett. 2009, 50, 1407-1410.
11. Su, W., Tetrahedron Lett. 1994, 35, 4955-4958.
12. Bahrami, K.; Khodaei, M. M.; Arabi, M. S., J. Org. Chem. 2010,
75, 6208-6213.
13. Yang, Y.; Chen, Z.; Rao, Y., Chem. Commun. 2014, 50, 15037-
15040.
14. Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M.; Bernini, R.,
J. Org. Chem. 2004, 69, 5608-5614.
15. Zhao, J.; Niu, S.; Jiang, X.; Jiang, Y.; Zhang, X.; Sun, T.; Ma, D.,
J. Org. Chem. 2018, 83, 6589-6598.
44. Enneffati, M.; Maaloul, N. K.; Louati, B.; Guidara, K.; Khirouni,
K., Opt. Quantum Electron. 2017, 49, 331.
16. Karmakar, U.; Samanta, R., J. Org. Chem. 2019, 84, 2850-2861.
17. Yu, Y.; Wu, Q.; Liu, D.; Yu, L.; Tan, Z.; Zhu, G., J. Org. Chem.
2019, 84, 11195-11202.
45. Antonakos, A.; Liarokapis, E.; Leventouri, T., Biomaterials 2007,
28, 3043-3054.
18. Zhang, Z.; Wang, S.; Zhang, Y.; Zhang, G., J. Org. Chem. 2019,
84, 3919-3926.
Supplementary Material
19. Zhu, H.; Shen, Y.; Wen, D.; Le, Z. G.; Tu, T., Org. Lett. 2019, 21,
974-979.
20. Wang, G. W., Chem. Soc. Rev. 2013, 42, 7668-7700.
Supplementary data to this article can be found online at XXX.