Letters
J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 4 761
reaction and trapping evidence for the 1,4-benzenediyl structure.
J . Am. Chem. Soc. 1972, 94, 660-661. (c) Darby, N.; Kim, C. V.;
Salaun, J . A.; Shelton, K. W.; Takada, S.; Masamune, S.
Concerning the 1,5-didehydro[10]annulene system. J . Chem.
Soc., Chem. Commun. 1971, 1516-1517. (d) Wong, H. N. C.;
Sondheimer, F. 5,12-Dihydro-6,11-didehydronaphthacene, a de-
rivative of 1,4-didehydronaphthalene. Tetrahedron Lett. 1980,
21, 217-220.
less potent in vitro cytotoxicity in parallel to their low
DNA cleaving activity. The two naphthyl substituted
acetates 6b and 6c are the most promising compounds,
with IC50 values in the low micromolar range. We found
that the quinone 11 neither causes DNA cleavage at 100
µM nor exhibits cytotoxicity against the P388 cell line.
The latter result is different from the reported observa-
tion on a similar quinone compound.14
Con clu sion . We have discovered a novel series of (E)-
3-acyloxy-4-(arylmethylidene)cyclodeca-1,5-diynes 6 and
7 as the promising DNA cleaving and cytotoxic agents.
Experimental evidences have confirmed formation of 10-
membered ring enediynes from cyclic 1,5-diynes pre-
sumably through an allylic cation intermediate 2
(R ) H). It suggests that the enediyne pathway should
be one of the possible mechanisms of action for this
novel class of cyclic 1,5-diyne compounds. Manipulation
on the aryl substituent could finely tune the biological
potency although the exact factor for the enhanced DNA
damage and cytotoxicity of the naphthyl compounds is
unclear. We did not observe formation of the quinone
11 in the reaction mixture of 6a by LC-MS analysis.
Moreover, 11 failed to exhibit both DNA cleavage and
cytotoxicity. It is unlikely that our results described
above involve action of the quinone intermediates.
(5) Reviews: (a) Pratviel, G.; Bernadou, J .; Meunier, B. Carbon-
hydrogen bonds of DNA sugar units as targets for chemical
nucleases and drugs. Angew. Chem., Int. Ed. Engl. 1995, 34,
746-769. (b) Murphy, J . A.; Griffiths, J . A survey of natural
products which abstract hydrogen atoms from nucleic acids. Nat.
Prod. Rep. 1993, 551-564.
(6) (a) Nicolaou, K. C.; Zuccarello, G.; Ogawa, Y.; Schweiger, E. J .;
Kumazawa, T. Cyclic conjugated enediynes related to calicheam-
icins and esperamicins: calculations, synthesis, and properties.
J . Am. Chem. Soc. 1988, 110, 4866-4868. (b) Nicolaou, K. C.;
Zuccarello, G.; Riemer, C.; Estevez, V. A.; Dai, W.-M. Design,
synthesis, and study of simple monocyclic conjugated enediynes.
The 10-membered ring enediyne moiety of the enediyne anti-
cancer antibiotics. J . Am. Chem. Soc. 1992, 114, 7360-7371.
(7) Maier, M. E.; Brandstetter, T. Oxidative generation of an
enediyne system from 1,5-diyne precursor. A novel triggering
device for enediynes. Tetrahedron Lett. 1991, 32, 3679-3682.
(8) Myers, A. G.; Dragovich, P. S. Design and synthesis of a system
for enediyne formation by anthraquinone reductive activation.
J . Am. Chem. Soc. 1992, 114, 5859-5860.
(9) Dai, W.-M.; Wu, J .; Fong, K. C.; Lee, M. Y. H.; Lau, C. W.
Regioselective synthesis of acyclic cis-enediynes via an acid-
catalyzed rearrangement of 1,2-dialkynylallyl alcohols. Synthe-
ses, computational calculations, and mechanism. J . Org. Chem.
1999, 64, 5062-5082 and references therein.
(10) Dai, W.-M.; Fong, K. C.; Lau, C. W.; Zhou, L.; Hamaguchi, W.;
Nishimoto, S. Synthesis and DNA cleavage study of a 10-
membered ring enediyne formed via allylic rearrangement. J .
Org. Chem. 1999, 64, 682-683.
(11) Dai, W.-M.; Wu, A.; Nishimoto, S. Biological activity and
mechanism of action of a novel class of enediyne prodrugs. The
221st American Chemical Society National Meeting, San Diego,
CA, April 1-5, 2001; Abstract MEDI 6.
(12) (a) Dai, W.-M.; Wu, A. First synthesis of a highly strained
cyclodeca-1,5-diyne skeleton via intramolecular Sonogashira
cross-coupling. Tetrahedron Lett. 2001, 42, 81-83. (b) Dai, W.-
M.; Wu, A.; Hamaguchi, W. Intramolecular Nozaki-Hiyama-
Kishi reactions and Ln(III)-catalyzed allylic rearrangement as
the key steps towards 10-membered ring enediynes. Tetrahedron
Lett. 2001, 42, 4211-4214.
Ack n ow led gm en t. Financial supports to A. Wu
through a postdoctoral fellowship from the Department
of Chemistry, HKUST, to W. Hamaguchi through an
RGC Direct Allocation Grant (DAG97/98.SC12), and to
M. Y. H. Lee through a HKUST Postdoctoral Fellowship
Matching Fund (PDF99/00) are acknowledged.
Su p p or tin g In for m a tion Ava ila ble: DNA binding con-
stants K′ of selected compounds and spectral, analytical, and
LC-MS data. This information is available free of charge via
the Internet at http://pubs.acs.org.
(13) (a) Dai, W.-M.; Lee, M. Y. H. Eu(fod)3-catalyzed rearrangement
of allylic esters possessing a chelating site. Application to
enediyne synthesis. Tetrahedron Lett. 1999, 40, 2397-2400. (b)
Shull, B. K.; Sakai, T.; Koreeda, M. Eu(fod)3-catalyzed rear-
rangement of allylic methoxyacetates. J . Am. Chem. Soc. 1996,
118, 11690-11691.
(14) J ones, L. H.; Harwig, C. W.; Wentworth, P., J r.; Simeonov, A.;
Wentworth, A. D.; Py, S.; Ashley, J . A.; Lerner, R. A.; J anda, K.
D. Conversion of enediynes into quinones by antibody catalysis
and in aqueous buffers: Implications for an alternative enediyne
therapeutic mechanism. J . Am. Chem. Soc. 2001, 123, 3607-
3608.
(15) (a) Grissom, J . W.; Gunawardena, G. U. Intermolecular reaction
of nitroxide radicals with biradical intermediates generated from
aromatic enediynes. Tetrahedron Lett. 1995, 36, 4951-4954. (b)
J ones, G. B.; Plourde, G. W., II. Electronic control of the
Bergman cycloaromatization: Synthesis and chemistry of chlo-
roenediynes. Org. Lett. 2000, 2, 1757-1759.
Refer en ces
(1) Selected reviews: (a) Nicolaou, K. C.; Dai, W.-M. Chemistry and
biology of the enediyne antitumor antibiotics. Angew. Chem., Int.
Ed. Engl. 1991, 30, 1387-1530. (b) Lhermitte, H.; Grierson, D.
S. The enediyne and dienediyne based antitumor antibiotics.
Methodology and strategies for total synthesis and construction
of bioactive analogues. Part 1 and Part 2. Contemp. Org. Synth.
1996, 3, 41-63 and 93-124. (c) Recent Progress in the Chemistry
of Enediyne Antibiotics; Tetrahedron Symposia-in-print No. 53;
Doyle, T. W., Kadow, J . F., Eds.; Tetrahedron 1994, 50, No. 5.
(d) Grissom, J . W.; Gunawardena, G. U.; Klingberg, D.; Huang,
D. The chemistry of enediynes, enyne allenes and related
compounds. Tetrahedron 1996, 52, 6453-6518. (e) Enediyne
Antibiotics as Antitumor Agents; Doyle, T. W., Borders, D. B.,
Eds.; Marcel Dekker: New York, 1994. (f) DNA and RNA
Cleavers and Chemotherapy of Cancer and Viral Diseases;
Meunier, B., Ed.; Kluwer Academic Publishers: Dordrecht, 1996;
pp 1-73.
(16) Mosmann, T. Rapid colorimetric assay for cellular growth and
survival: Application to proliferation and cytotoxicity assays.
J . Immunol. Methods 1983, 65, 55-63. Ferrari, M.; Fornasiero,
M. C.; Isetta, A. M. MTT colorimetric assay for testing mac-
rophage cytotoxic activity in vitro. J . Immunol. Methods 1990,
131, 165-172.
(2) Zein, N.; Reiss, P.; Bernatowicz, M.; Bolgar, M. The proteolytic
specificity of the natural enediyne-containing chromoproteins is
unique to each chromoprotein. Chem. Biol. 1995, 2, 451-455.
(3) A review, see: Maier, M. E. Design of enediyne prodrugs. Synlett
1995, 13-26.
(4) (a) Bergman, R. G. Reactive 1,4-dehydroaromatics. Acc. Chem.
Res. 1973, 6, 25-31. (b) J ones, R. R.; Bergman, R. G. p-Benzyne.
Generation as an intermediate in
a
thermal isomerization
J M015588E