A. N. Blanchard, D. J. Burnell / Tetrahedron Letters 42 (2001) 4779–4781
4781
1216 in a yield of 23%. (None of the unrearranged aldol
product 13 was detected.) The only isolated by-product
(25%) was the ring-opened compound 14 (as a 2:1
mixture of isomers), but the use of the more substituted
acetal 11b did not lead to a better yield of 12. Butkus
and Bielinyte–Williams11 had shown that 12 can also be
produced by the reaction of the enamine of 2-methyl-
cyclohexanone with acryloyl chloride, but this unavoid-
ably leads to the production of an equal amount of 15.
(Furthermore, it appears from their 13C NMR data that
their assignment of structures to the isomers 12 and 15
might be reversed.)
6. Crane, S. N.; Jenkins, T. J.; Burnell, D. J. J. Org. Chem.
1997, 62, 8722.
7. (a) Crane, S. N.; Burnell, D. J. J. Org. Chem. 1998, 63,
1352; (b) Crane, S. N.; Burnell, D. J. J. Org. Chem. 1998,
63, 5708.
8. Wu, Y.-J.; Burnell, D. J. Tetrahedron Lett. 1989, 30,
1021.
9. For instance: (a) Parker, K. A.; Koziski, K. A.; Breau, G.
Tetrahedron Lett. 1985, 26, 2181; (b) Bunnelle, W. H.;
Shangraw, W. R. Tetrahedron 1987, 43, 2005; (c) Burnell,
D. J.; Wu, Y.-J. Can. J. Chem. 1989, 67, 816; (d) Burnell,
D. J.; Wu, Y.-J. Can. J. Chem. 1990, 68, 804; (e) Hyuga,
S.; Shoji, H.; Suzuki, A. Bull. Chem. Soc. Jpn. 1992, 65,
2303; (f) Julia, M.; Saint-Jalmes, L.; Lila, C.; Xu, J. Z.;
Moreau, L.; Pfeiffer, B.; Eck, G.; Pelsez, L.; Rolando, C.
Bull. Soc. Chim. Fr. 1993, 130, 447; (g) Pandey, B.;
Reddy, R. S.; Kumar, P. J. Chem. Soc., Chem. Commun.
1993, 870; (h) Wu, Y.-J.; Zhu, Y.-Y.; Burnell, D. J. J.
Org. Chem. 1994, 59, 104; (i) Wendt, J. A.; Gauvreau, P.
J.; Bach, R. D. J. Am. Chem. Soc. 1994, 116, 9921; (j)
Liu, P.-Y.; Burnell, D. J. J. Chem. Soc., Chem. Commun.
1994, 1183; (k) Balog, A.; Curran, D. P. J. Org. Chem.
1995, 60, 337; (l) Balog, A.; Geib, S. J.; Curran, D. P. J.
Org. Chem. 1995, 60, 345; (m) Zhu, Y.-Y.; Burnell, D. J.
Tetrahedron: Asymmetry 1996, 7, 3295; (n) Lin, X.;
Kavash, R. W.; Mariano, P. S. J. Org. Chem. 1996, 61,
7335; (o) Liu, P.-Y.; Wu, Y.-J.; Burnell, D. J. Can. J.
Chem. 1997, 75, 656; (p) Kanada, R. M.; Taniguchi, T.;
Ogasawara, K. J. Chem. Soc., Chem. Commun. 1998,
1755.
The addition of BF3·Et2O to a dilute solution of 7c, in
which the acetal was produced from an aldehyde, did
not give any of the desired bicyclic ketone 16. The
unusual fused tricyclic compound 17,17 in which a
boron from the Lewis acid was captured in one ring,
was isolated in low yield (18%).
In summary, intramolecular geminal acylation can take
place when a four- or a five-membered acyloin is
attached by a three-carbon tether to the acetal derived
from a methyl ketone. This is in spite of the initial step
involving a mode of reaction (carbonꢀcarbon bond-for-
mation adjacent to, and syn to, the point of attachment
of the tether onto the acyloin) that is highly disfavored
in the analogous, intermolecular reactions of 2.
Although the yields of the bicyclic diketones were mod-
est, the positions of the methyl groups on the bridge-
heads were assured by the intramolecular geminal
acylation process, in contrast with the enamine route.
10. Hickmott, P. W.; Hargreaves, J. R. Tetrahedron 1967, 23,
3151.
11. Butkus, E.; Bielinyte-Williams, B. Collect. Czech. Chem.
Commun. 1995, 60, 1343.
12. Krapcho, A. P.; Lovey, A. J. Tetrahedron Lett. 1973, 957.
13. Tsuiji, J.; Masaoka, K.; Takahashi, T. Tetrahedron Lett.
1977, 26, 2267.
Acknowledgements
We thank the Natural Sciences and Engineering
Research Council of Canada for financial support.
14. Kuwajima, I.; Azegami, I. Tetrahedron Lett. 1979, 24,
2369.
15. For 8: white solid, mp 65–66°C; 1H NMR (300 MHz,
CDCl3) l 2.95 (1H, m), 2.66 (2H, m), 2.20 (2H, m), 1.88
(4H, m), 1.06 (3H, s); 13C NMR (75 MHz, CDCl3) l
217.7, 212.3, 59.3, 45.7, 44.9, 42.9, 35.7, 18.2, 12.1.
References
1. Shimada, J.; Hashimoto, K.; Kim, B. M.; Nakamura, E.;
Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 1759.
2. (a) Burnell, D. J.; Wu, Y.-J. Tetrahedron Lett. 1988, 29,
4369; (b) Pandey, B.; Khire, U. R.; Ayyangar, N. R.
Synth. Commun. 1989, 19, 2741.
3. Wu, Y.-J.; Strickland, D. W.; Jenkins, T. J.; Liu, P.-Y.;
Burnell, D. J. Can. J. Chem. 1993, 71, 1311.
4. Jenkins, T. J.; Burnell, D. J. J. Org. Chem. 1994, 59,
1485.
1
16. For 12: white solid, H NMR (500 MHz, CDCl3) l 2.90
(1H, m), 2.64 (1H, m), 2.38 (1H, m), 2.27 (1H, m), 2.20
(1H, m), 2.07 (2H, m), 1.81 (1H, m), 1.75–1.60 (3H, m),
1.15 (3H, s); 13C NMR (125 MHz, CDCl3) l 213.4, 212.6,
63.4, 44.5, 43.2, 39.1, 36.1, 22.0, 19.3, 16.8.
1
17. For 17: white solid, mp 98–100°C; H NMR (300 MHz,
CDCl3) l 2.91 (2H, m), 2.55 (3H, m), 2.13 (2H, m), 1.72
(2H, m), 1.30–0.80 (2H, m); 13C NMR (75 MHz, CDCl3)
l 199.0, 186.2, 116.6, 36.0, 33.7, 31.0, 30.1, 30.0, 21.9.
The structure of 17 was confirmed by X-ray diffraction.
5. Bloomfield, J. J.; Nelke, J. M. Organic Syntheses; Wiley:
New York, 1988; Collect. Vol. VI, pp. 167–172.
.