Full Paper
[8]
a) H. Furuta, H. Maeda, A. Osuka, J. Am. Chem. Soc. 2000, 122, 803–807;
b) B. Adinarayana, A. P. Thomas, C. H. Suresh, A. Srinivasan, Angew. Chem.
Int. Ed. 2015, 54, 10478–10482; Angew. Chem. 2015, 127, 10624–10628.
M. Melník, M. Kabešová, J. Coord. Chem. 2000, 50, 323–338.
D. C. Powers, T. Ritter, Acc. Chem. Res. 2012, 45, 840–850.
tion noted below, all non-hydrogen atoms were refined anisotropi-
cally, whereas hydrogen atoms were typically placed in calculated
positions and constrained to a riding model. [Cu2(OAc)4(6-Me)2]
(Figure 3a) was needle-like and 8-im-OH (Figure S4) was a thin
sheet. Reflections were not found to adequately high angles in spite
of the longer frame times nor was the data collection complete.
Not surprisingly, the data/parameter ratio was generally not 10:1.
Notwithstanding these problems, both structures make chemical
sense, and only the fine details are in question. The dicopper(II)
tetraacetate structure of [Cu2(OAc)4(6-Me)2] is quite normal if com-
pared to the literature structures containing other axial ligands. In
the structure of 8-im-OH, electron density was found in the area
between molecules and it was assigned as oxygen from a water
molecule. It proved to be disordered and was refined as 1/2 of an
oxygen atom at each site. CCDC 1455876 {for [Cu2(6-Me)2(OAc)4]},
1455877 {for [Cu(11)(OAc)2]}, and 1455878 (for 8-im-OH) contain
[9]
[10]
[11]
E. Tkatchouk, N. P. Mankad, D. Benitez, I. William, A. Goddard, F. D. Toste,
J. Am. Chem. Soc. 2011, 133, 14293–14300.
[12]
a) N. Kitajima, Y. Moro-oka, Chem. Rev. 1994, 94, 737–757; b) E. I. Solo-
mon, U. M. Sundaram, T. E. Machonkin, Chem. Rev. 1996, 96, 2563–2605;
c) E. I. Solomon, P. Chen, M. Metz, S.-K. Lee, A. E. Palmer, Angew. Chem.
Int. Ed. 2001, 40, 4570–4590; Angew. Chem. 2001, 113, 4702–4724; d)
K. D. Karlin, S. Itoh, Reactive Intermediates in Chemistry and Biology, vol.
4 (Ed.: S. E. Rokita), Wiley, Hoboken, NJ, 2011; e) M. Rolff, J. Schotten-
heim, H. Decker, F. Tuczek, Chem. Soc. Rev. 2011, 40, 4077–4098.
a) P. L. Holland, W. B. Tolman, Coord. Chem. Rev. 1999, 190–192, 855–869;
b) E. A. Lewis, W. B. Tolman, Chem. Rev. 2004, 104, 1047–1076; c) E. Kim,
E. E. Chufan, K. Kamaraj, K. D. Karlin, Chem. Rev. 2004, 104, 1077–1133;
d) L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev. 2004, 104,
1013–1045; e) L. Q. Hatcher, K. D. Karlin, J. Biol. Inorg. Chem. 2004, 9,
669–683.
X.-X. Guo, D.-W. Gu, Z. Wu, W. Zhang, Chem. Rev. 2015, 115, 1622–1651.
G.-C. Kuang, P. M. Guha, W. S. Brotherton, J. T. Simmons, L. A. Stankee,
B. T. Nguyen, R. J. Clark, L. Zhu, J. Am. Chem. Soc. 2011, 133, 13984–
14001.
P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. Int. Ed. 2000, 39,
2632–2657; Angew. Chem. 2000, 112, 2740–2767.
[13]
[14]
[15]
Acknowledgments
[16]
[17]
This work was supported by the National Science Foundation
(CHE1213574) and the Florida State University Council on Re-
search and Creativity.
a) G. Zhang, H. Yi, G. Zhang, Y. Deng, R. Bai, H. Zhang, J. T. Miller, A. J.
Kropf, E. E. Bunel, A. Lei, J. Am. Chem. Soc. 2014, 136, 924–926; b) R. Bai,
G. Zhang, H. Yi, Z. Huang, X. Qi, C. Liu, J. T. Miller, A. J. Kropf, E. E. Bunel,
Y. Lan, A. Lei, J. Am. Chem. Soc. 2014, 136, 16760–16763.
[18]
[19]
a) J. E. Hein, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1302–1315; b) B. T.
Worrell, J. A. Malik, V. V. Fokin, Science 2013, 340, 457–460; c) L. Jin, D. R.
Tolentino, M. Melaimi, G. Bertrand, Sci. Adv. 2015, 1, e1500304.
a) J. K. Kochi, R. V. Subramanian, Inorg. Chem. 1965, 4, 1527–1533; b)
A. T. A. Cheng, R. A. Howald, Inorg. Chem. 1968, 7, 2100–2105; c) P. Shar-
rock, M. Melník, Can. J. Chem. 1985, 63, 52–56; d) Y. Fujii, N. Nakasuka,
M. Tanaka, H. Yamada, M. Mizuta, Inorg. Chem. 1989, 28, 3600–3602.
S. V. Ley, A. W. Thomas, Angew. Chem. Int. Ed. 2003, 42, 5400–5449;
Angew. Chem. 2003, 115, 5558–5607.
Copper(II) acetate may carry different roles, as exemplified by the two
recently reported reactions shown in Scheme 7 and discussed in the
accompanying section.
Various synthetic methods have been reported for copper-mediated
amine-to-imine or alcohol-to-imine oxidations (see ref.[23a–23g]); ref.[24] is
an example of the copper(II) acetate catalyzed dehydrogenation of ami-
nals.
a) R. D. Patil, S. Adimurthy, Adv. Synth. Catal. 2011, 353, 1695–1700; b) T.
Sonobe, K. Oisaki, M. Kanai, Chem. Sci. 2012, 3, 3249–3255; c) M. Larg-
eron, M.-B. Fleury, Angew. Chem. Int. Ed. 2012, 51, 5409–5412; Angew.
Chem. 2012, 124, 5505–5508; d) J. Kim, S. S. Stahl, ACS Catal. 2013, 3,
1652–1656; e) M. Largeron, M.-B. Fleury, Chem. Eur. J. 2015, 21, 3815–
3820; f) W. Yin, C. Wang, Y. Huang, Org. Lett. 2013, 15, 1850–1853; g) H.
Chen, Q. Wang, Y. Huang, Tetrahedron 2015, 71, 3632–3636.
M. T. Richers, C. Zhao, D. Seidel, Beilstein J. Org. Chem. 2013, 9, 1194–
1201.
There is another mechanistically characterized case in which a copper
catalyst mediates both dehydrogenation (dehydrogenative coupling) as
the major reaction and oxygenation as a minor path; distinguished from
the current work, the oxygenated minor product in the referenced study
was postulated to be a cofactor in the major dehydrogenative coupling
pathway with a different kinetic profile: J. B. Hewgley, S. S. Stahl, M. C.
Kozlowski, J. Am. Chem. Soc. 2008, 130, 12232–12233.
a) M. Kirchgessner, K. Sreenath, K. R. Gopidas, J. Org. Chem. 2006, 71,
9849–9852; b) K. Sreenath, C. V. Suneesh, V. K. R. Kumar, K. R. Gopidas,
J. Org. Chem. 2008, 73, 3245–3251.
The comparison of the reaction progress in a UV/Vis assay is shown in
Figure S5. Whereas the ratio of initial rates (up to 10 min point) of 1-im
production under aerobic and anaerobic conditions was ca. 5-fold, the
ratio of the 1-im-OH production rate was ca. 13-fold. These data suggest
that O2 participates in the oxygenation reaction, rather than the acetate
Keywords: Amines · Bridging ligands · Copper ·
Dehydrogenation · Dinuclear catalysis · Oxidation
[1] a) G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054–3131;
b) C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 2012, 41, 3464–3484; c)
S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev.
2013, 113, 6234–6458.
[2] a) J. Hartwig, Organotransition Metal Chemistry – From Bonding to Cataly-
sis, University Science Books, Sausalito, CA, 2010; b) S. S. Stahl, Angew.
Chem. Int. Ed. 2004, 43, 3400–3420; Angew. Chem. 2004, 116, 3480–3501;
c) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147–1169; d) C. C. C.
Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew.
Chem. Int. Ed. 2012, 51, 5062–5085; Angew. Chem. 2012, 124, 5150–5174;
e) K. M. Engle, J.-Q. Yu, J. Org. Chem. 2013, 78, 8927–8955.
[3] a) T. Cohen, J. Wood, A. G. J. Dietz, Tetrahedron Lett. 1974, 15, 3555–
3558; b) N. Yoshikai, E. Nakamura, Chem. Rev. 2012, 112, 2339–2372; c)
A. Casitas, X. Ribas, Chem. Sci. 2013, 4, 2301–2318; d) S. D. McCann, S. S.
Stahl, Acc. Chem. Res. 2015, 48, 1756–1766.
[4] a) E. Nakamura, S. Mori, Angew. Chem. Int. Ed. 2000, 39, 3750–3771;
Angew. Chem. 2000, 112, 3902–3924; b) S. H. Bertz, R. A. Hardin, T. J.
Heavey, C. A. Ogle, Angew. Chem. Int. Ed. 2013, 52, 10250–10252; Angew.
Chem. 2013, 125, 10440–10442.
[5] a) A. Casitas, A. E. King, T. Parella, M. Costas, S. S. Stahl, X. Ribas, Chem.
Sci. 2010, 1, 326–330; b) L. M. Huffman, A. Casitas, M. Font, M. Canta, M.
Costas, X. Ribas, S. S. Stahl, Chem. Eur. J. 2011, 17, 10643–10650; c) M.
Font, T. Parella, M. Costas, X. Ribas, Organometallics 2012, 31, 7976–7982;
d) C. Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan, Chem. Soc.
Rev. 2014, 43, 3525–3550.
[6] a) X. Ribas, D. A. Jackson, B. Donnadieu, J. Mahía, T. Parella, R. Xifra, B.
Hedman, K. O. Hodgson, A. Llobet, T. D. P. Stack, Angew. Chem. Int. Ed.
2002, 41, 2991–2994; Angew. Chem. 2002, 114, 3117–3120; b) B. Yao, D.-
X. Wang, Z.-T. Huang, M.-X. Wang, Chem. Commun. 2009, 2899–2901; c)
A. E. King, L. M. Huffman, A. Casitas, M. Costas, X. Ribas, S. S. Stahl, J. Am.
Chem. Soc. 2010, 132, 12068–12073.
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[7] a) A. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew. Chem. Int. Ed. 2011,
50, 11062–11087; Angew. Chem. 2011, 123, 11256–11283; b) A. M. Suess,
M. Z. Ertem, C. J. Cramer, S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 9797–
9804.
Eur. J. Inorg. Chem. 2016, 3728–3743
3742
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim