DOI: 10.1039/C4CC10155C
ChemComm
16737; (d) E. Shirakawa, K.-i. Itoh, T. Higashino and T. Hayashi, J.
Am. Chem. Soc., 2010, 132, 15537; (e) C.-L. Sun, H. Li, D.-G. Yu, M.
Yu, X. Zhou, X.-Y. Lu, K. Huang, S.-F. Zheng, B.-J. Li and Z.-J. Shi,
Nat. Chem., 2010, 2, 1044; (f) K.-S. Masters and S. Brase, Angew.
Chem. Int. Ed., 2013, 52, 866; (g) A. Studer and S. Amrein, Angew.
Chem. Int. Ed., 2000, 39, 3080; (h) A. Studer and D. P. Curran, Angew.
Chem. Int. Ed., 2011, 50, 5018.
(a) X. Guo, J. Wang and C. J. Li, J. Am. Chem. Soc., 2009, 131, 15092;
(b) Q. Shuai, L. Yang, X. Guo, O. Basle and C. J. Li, J. Am. Chem.
Soc., 2010, 132, 12212; (c) X. Guo, J. Wang and C.J. Li, Org. Lett.,
2010, 12, 3176; (d) L. Yang, C. A. Correia, X. Guo and C. J. Li,
Tetrahedron Lett., 2010, 51, 5486; (e) L. Yang, X. Guo and C.J. Li,
Adv. Synth. Catal., 2010, 352, 2899; (f) L. Yang, T. Zeng, Q. Shuai, X.
Guo and C.J. Li, Chem. Comm., 2011, 47, 2161.
For radial-type hydroacylation of olefins, see: (a) C. Chatgilialoglu, D.
Crich, M. Komatsu and I. Ryu, Chem. Rev., 1999, 99, 1991; (b) V.
Chudasama, R. J. Fitzmaurice and S. Caddick, Nat. Chem., 2010, 2,
592; (c) V. Chudasama, R. J. Fitzmaurice, J. M. Ahern and S. Caddick,
Chem. Comm., 2010, 46, 133; (d) R. J. Fitzmaurice, J. M. Ahern and S.
Caddick, Org. Biolmol. Chem., 2009, 7, 235; (e) S. Esposti, D. Dondi
and M. Fagnoni, A. Albini, Angew. Chem. Int. Ed., 2007, 46, 2531; (f)
S. Tsujimoto, T. Iwahama, S. Sakaguchi and Y. Ishii, Chem. Commun.,
2001, 2352; (g) S. Tsujimoto, S. Sakaguchi and Y. Ishii, Tetrahedron
Lett., 2003, 44, 5601.
The phenylcyclohexadienyl cation IV is 35.7 Kcal/mol higher in
free energy than the radical III. The activation energies for SET are
often close to the reaction free energies using Marcus theory,19 and
thus the activation barrier of SET is roughly estimated as ΔGact
≈
SET
35.7 Kcal/mol. By comparing ΔGact
with the activation energies
SET
of transition states (TS1-TS4) obtained by DFT calculation, the rate-
determine step might be the SET step. The low KIE value (1.41)
obtained from the competition reaction between C6H6 and C6D6 with
aldehyde 1l further confirmed the deprotonation was not the rate-
determine step (Scheme 3d).
6
7
In conclusion, we have developed the first metal-free oxidative
decarbonylative coupling of aromatic aldehydes with electron-rich or
electron-deficient arenes to produce biaryl compounds. The substrate
scope, ortho-regioselectivity, radical trapping experiments and DFT
calculations supported a non-chain radical homolytic aromatic
substitution (HAS) type mechanism and DNB acted as the electron
“porter”. The ready availability of aromatic aldehydes and arenes,
metal-free conditions should make this oxidative decarbonylative
coupling attractive for the biaryl synthesis. The further improvement
and detailed mechanism are ongoing in our laboratory.
8
9
(a) K. Matcha and A. P. Antonchick, Angew. Chem. Int. Ed., 2013, 52,
2082; (b) M.-B. Zhou, R.-J. Song, X.-H. Ouyang, Y. Liu, W.-T. Wei,
G.-B. Deng and J.-H. Li, Chem. Sci., 2013, 4, 2690.
(a) E. Watanabe, A. Kaiho, H. Kusama and N. Iwasawa, J. Am. Chem.
Soc., 2013, 135, 11744; (b) Y.-J. Jang, M.-C. Yan, Y.-F. Lin and C.-F.
Yao, J. Org. Chem., 2004, 69, 3961.
The ester group would make the biaryl product not so volatile.
For selected examples of aldehyde C(sp2)-H transformations promoted
by oxidant/transition-metal combination, see: (a) J. Wang, C. Liu, J.
Yuan and A. Lei, Chem. Commun., 2014, 50, 4736; (b) J. Wang, C.
Liu, J. Yuan and A. Lei, Angew. Chem. Int. Ed., 2013, 52, 2256; (c)
B.-X. Tang, R.-J. Song, C.-Y. Wu, Y. Liu, M.-B. Zhou, W.-T. Wei,
G.-B. Deng, D.-L. Yin and J.-H. Li, J. Am. Chem. Soc., 2010, 132,
8900.
For n-butanal, the self-aldol condation by-product was also detected. A
control reaction using benzoic acid as the starting material to replace
benzaldehyde failed to afford the biphenyl product, which could
exclude the oxidation-decarboxylation-coupling pathway.
(a) J. Liu, C. Shao, Y. Zhang, G. Shi and S. Pan, Org. Biomol. Chem.,
2014, 12, 2637; (b) C. Li, L. Wang, P. Li and W. Zhou, Chem. Eur. J.,
2011, 17, 10208; (c) O. Basle, J. Bidange, Q. Shuai and C.-J. Li, Adv.
Synth. Catal., 2010, 352, 1145. (d) F. Xiao, Q. Shuai, F. Zhao, O.
Basle, G.-J. Deng and C.-J. Li, Org. Lett., 2011, 13, 1614.
The trapping of aryl radical by 1,1-diphenylethene was reported by:
C.-L. Sun, Y.-F. Gu, B. Wang and Z.-J. Shi, Chem. Eur. J., 2011, 17,
10844.
(a) Y. Mori, J. Phys. Org. Chem., 2014, 27, 803; (b) X.-M. Zhang, D.-
L. Yang and Y.-C. Liu, J. Org. Chem., 1993, 58, 224; (c) S. F. Nelsen,
M. N. Weaver, A. E. Konradsson, J. P. Telo and T. Clark, J. Am. Chem.
Soc., 2004, 126, 15431.
(a) N. Zhang, S. R. Samanta, B. M. Rosen and V. Percec, Chem. Rev.,
2014, 114, 5848; (b) R. A. Rossi, A. B. Pierini and A. B. Penenory,
Chem. Rev., 2003, 103, 71.
Acknowledgements
L. Yang thanks Q. He for assistance on DFT calculations.
This work was supported by the National Natural Science
Foundation of China (21202138), Xiangtan University “Academic
Leader Program” (11QDZ20), New Teachers' Fund for Doctor
Stations, Ministry of Education (20124301120007), and Hunan
Provincial Natural Science Foundation (13JJ4047, 12JJ7002), Hunan
Provincial Excellent Young Scientist Foundation (13B114).
The authors declare no competing financial interest.
10
11
Notes and references
1
For recent reviews on applications of biaryl units, see: (a) J. Hassan, M.
Sevignon, C. Gozzi, E. Schulz and M. Lemaire, Chem. Rev., 2002, 102,
1359; (b) M. C. Kozlowski, B. J. Morgan and E. C. Linton, Chem. Soc.
Rev., 2009, 38, 3193; (c) D. S. Surry and S. L. Buchwald, Angew.
Chem. Int. Ed., 2008, 47, 6338; (d) R. Martin and S. L. Buchwald, Acc.
Chem. Res., 2008, 41, 1461.
12
13
2
For selected examples on Metal-Catalyzed Cross-Coupling Reactions,
see: (a) Metal-Catalyzed Cross-Coupling Reactions and More, Eds.: A.
de Meijere, S. Bräse and M. Oestreich, Wiley-VCH, Weinheim, 2014;
(b) C. C. C. J. Seechurn, M. O. Kitching, T. J. Colacot and V. Snieckus,
Angew. Chem. Int. Ed., 2012, 51, 5062; (c) J.-P. Corbet and G.
Mignani, Chem. Rev., 2006, 106, 2651; d) M. Catellani, E. Motti, N.
Della Ca and R. Ferraccioli, Eur. J. Org. Chem., 2007, 4153.
14
15
3
Direct C-H arylations has developed as an efficient complement, see:
(a) I. Hussaina and T. Singh, Adv. Synth. Catal., 2014, 356, 1661; (b)
A. Dermenci and G. Dong, Sci. China Chem., 2013, 56, 685; (c) D.-G.
Yu, B.-J. Li and Z.-J. Shi, Tetrahedron, 2012, 68, 5130; (d) J. A.
Ashenhurst, Chem. Soc. Rev., 2010, 39, 540; (e) C. Liu, H. Zhang, W.
Shi and A. Lei, Chem. Rev., 2011, 111, 1780. (f) C. S. Yeung and V.
M. Dong, Chem. Rev., 2011, 111, 1215.
16
17
18
H. Fischer, Chem. Rev., 2001, 101, 3581.
4
5
For reviews on HAS, see: (a) W. R. Bowman and J. M. D. Storey,
Chem. Soc. Rev., 2007, 36, 1803; (b) R. Bolton and G. H. Williams,
Chem. Soc. Rev., 1986, 15, 261; (c) A. Studer and M. Bossart, In
Radicals in Organic Synthesis; Eds.: P. Renaud, M. P. Sibi, Wiley-
VCH; Weinheim, 2001; Vol. 2, Chapter 1.4, pp 62-80.
(a) S. Yanagisawa, K. Ueda, T. Taniguchi and K. Itami, Org. Lett.
2008, 10, 4673; (b) S. Yanagisawa and K. Itami, ChemCatChem, 2011,
3, 827; (c) W. Liu, H. Cao, H. Zhang, H. Zhang, K. H. Chung, C. He,
H. Wang, F. Y. Kwong and A. Lei, J. Am. Chem. Soc., 2010, 132,
The acylation of amines by aldehydes in the presence of peroxides
have previously been reported: (a) F. Xiao, Y. Liu, C. Tang and G.-J.
Deng, Org. Lett., 2012, 14, 984; (b) G. S. Kumar, R. A. Kumar, P. S.
Kumar, N. V. Reddy, K. V. Kumar, M. L. Kantam, S. Prabhakar and K.
R. Reddy, Chem. Commun., 2013, 49, 6686; (c) X. Guo, L. Tang, Y.
Yang, Z. Zha and Z. Wang, Green Chem., 2014, 16, 2443.
19 (a) C. Dey, E. Larionov and E. P. Kundig, Org. Biomol. Chem., 2013,
11, 6734; (b) G. O. Jones, P. Liu, K. N. Houk and S. L. Buchwald, J.
Am. Chem. Soc., 2010, 132, 6205.
This journal is © The Royal Society of Chemistry 2013
Chem. Commun., 2015, 00, 1-3 | 4