10.1002/anie.201712589
Angewandte Chemie International Edition
COMMUNICATION
[9] G. C. Adam, B. F. Cravatt, E. J. Sorensen, Chem. Biol. 2001, 8, 81.
In the gels, another major protein around 25 kDa was also
labeled by probe 6a or 6b. This band was isolated and analyzed
by mass spectrometry after tryptic digestion. Subsequently, the
protein was identified to be chloramphenicol acetyltransferase
(CAT), which is an enzyme containing a cysteine (Cys31)
located in the chloramphenicol binding site and susceptible to
covalent modification.21 Retrospectively, detecting this protein
should be expected since the applied B834[DE3]pLysS bacteria
contain the pLysS plasmid with the gene encoding for CAT.
[10] a) K. T. Barglow, B. F. Cravatt, Chem. Biol. 2004, 11, 1523; b) K. T.
Barglow, B. F. Cravatt, Angew. Chem. 2006, 118, 7568; Angew. Chem. Int.
Ed. 2006, 45, 7408; c) K. T. Barglow, K. S. Saikatendu, M. H. Bracey, R.
Huey, G. M. Morris, A. J. Olson, R. C. Stevens, B. F. Cravatt, Biochemistry
2008, 47, 13514; d) E. Weerapana, C. Wang, G. M. Simon, F. Richter, S.
Khare, M. B. Dillon, D. A. Bachovchin, K. Mowen, D. Baker, B. F. Cravatt,
Nature 2010, 468, 790; e) N. J. Pace, E. Weerapana, ACS. Chem. Biol. 2014,
9, 258.
[11] a) H. L. Wong, D. C. Liebler, Chem. Res. Toxico. 2008, 21, 796; b) J. A.
Doorn, D. R. Petersen, Chem. Res. Toxicol. 2002, 15, 1445; c) R. M.
Lopachin, T. Gavin, D. R. Petersen, D. S. Barber, Chem. Res. Toxicol. 2009,
22, 1499; d) S. G. Kathman, Z. Xu, A. V. Statsyuk, J. Med. Chem. 2014, 57,
4969.
[12] a) C. Zhang, A. M. Spokoyny, Y. Zou, M. D. Simon, B. L. Pentelute,
Angew. Chem. 2013, 125, 14251; Angew. Chem. Int. Ed. 2013, 52, 14001; b)
A. M. Spokoyny, Y. Zou, J. J. Ling, H. Yu, Y. Lin, B. L. Pentelute, J. Am.
Chem. Soc. 2013, 135, 5946; c) A. D. de Araujo, H. N. Hoang, W. M. Kok, F.
Diness, P. Gupta, T. A. Hill, R. W. Driver, A. D. Price, S. Liras, D. P. Fairlie,
Angew. Chem. 2014; 126, 7085; Angew. Chem. Int. Ed. 2014, 53, 6965; d) D.
A. Shannon, R. Banerjee, E. R. Webster, D. W. Bak, C. Wang, E. Weerapana,
J. Am. Chem. Soc. 2014, 136, 3330; e) S. P. Brown, A. B. Smith III, J. Am.
Chem. Soc. 2015, 137, 4034; f) E. V. Vinogradova, C. Zhang, A. M. Spokoyny,
B. L. Pentelute, S. L. Buchwald, Nature 2015, 526, 687. g) C. Zhang, M.
Welborn, T. Zhu, N. J. Yang, M. S. Santos, T. Van Voorhis, B. L. Pentelute,
Nat. Chem. 2016, 8, 120; (h) S. KalhorꢀMonfared, M. R. Jafari, J. T. Patterson,
P. I. Kitov, J. J. Dwyer, J. M. Nussb, R. Derda, Chem. Sci. 2016, 7, 3785; (i) D.
Gimenez, A. Dose, N. L. Robson, G. Sandford, S. L. Cobb, C. R. Coxon, Org.
Biomol. Chem. 2017, 15, 4081.
In summary, it has been demonstrated that probes for site
selective cysteine labeling, enzyme inhibition and protein
profiling can be developed by rational and accurate tuning of the
electron deficiency of fluorobenzene derivatives. The reactivity
of the flourobenzene derivatives towards cysteine proved to
correlate with the Hammett σpꢀconstant of the paraꢀsubstituent
and with the number of additional fluorine substituents. Based
on this knowledge, probes for selective cysteine labeling over all
other amino acids were developed. The probes were
demonstrated to be applicable for labeling of proteins with free
cysteine residues such as BSA and eGFP. Chemoselective
inhibition of a cysteine protease over a serine protease was also
demonstrated. Developing less reactive probes allowed
discrimination among cysteine residues with different
physicochemical properties in the TEV protease, giving arylation
only at the cysteine residue in the catalytic site in an activityꢀ
dependent manner. These probes were used for activity based
protein profiling and for identifying proteins containing reactive
cysteine residues in cellular lysates.
[13] a) M. J. Evans, A. Saghatelian, E. J. Sorensen, B. F. Cravatt, Nat.
Biotechnol. 2005, 23, 1303; b) M. J. Evans, G. M. Morris, J. Wu, A. J. Olson,
E. J. Sorensen, B. F. Cravatt, Mol. Biosyst. 2007, 3, 495; c) E. Weerapana, G.
M. Simon, B. F. Cravatt, Nat. Chem. Biol. 2008, 4, 405; d) W. T. Lowther, D. A.
McMillen, A. M. Orville, B. W. Matthews, Proc. Natl. Acad. Sci. 1998, 95,
12153.
[14] G. Bulaj, T. Kortemme, D. P. Goldenberg, Biochemistry 1998, 37, 8965.
[15] Z. Y. Zhang, J. E. Dixon. Biochemistry 1993, 32, 9340.
[16] a) F. Diness, D. P. Fairlie, Angew. Chem. 2012, 124, 8136; Angew.
Chem. Int. Ed. 2012, 51, 8012; b) F. Diness, M. Begtrup, Org. Lett. 2014, 16,
3130; c) C. B. Jacobsen, M. Meldal, F. Diness Chem. Eur. J. 2017, 23, 846.
[17] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165.
Acknowledgements
We are grateful to The University of Copenhagen for support
through the UCPH
Evolutionary Chemical Biology).
–
lighthouse program (Center for
[18] F. Yang, L. G. Moss, G. N. Jr. Philips, Nat. Biotechnol. 1996, 14, 1246.
[19] K. A. Majorek, P. J. Porebski, A. Dayal, M. D. Zimmerman, K. Jablonska,
A. J. Stewart, M. Chruszcz, W. Minor, Mol. Immunol. 2012, 52, 174.
[20] a) J. Phan, A. Zdanov, A. G. Evdokimov, J. E. Tropea, H. K. Peters III, R.
B. Kapust, M. Li, A. Wlodawer, D. S. Waugh, J. Biol. Chem. 2002, 277,
50564; b) R. B. Kapust, D. S. Waugh, Protein Expr. Purif. 2000, 19, 312.
[21] A. Lewendon, W. V. Shaw, Biochem. J. 1990, 272, 499.
Keywords: Fluorobenzene • Arylation • Protein Modification •
Enzyme • Inhibitor
[1] a) B. F. Cravatt, A. T. Wright, J. W. Kozarich, Annu. Rev. Biochem. 2008,
77, 383; b) Y. Takaoka, A. Ojida, I. Hamachi, Angew. Chem. 2013, 125,;
Angew. Chem. Int. Ed. 2013, 52, 4088.
[2] a) Y. Liu, M. P. Patricelli, B. F. Cravatt, Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 14694; b) G. C. Adam, E. J. Sorensen, B. F. Cravatt, Nat. Biotechnol. 2002,
20, 805; c) E. F. Jansen, A. L. Curl, A. K. J. Balls, Biol. Chem. 1951, 190, 557;
(d) N. A. Thornberry, E. P. Peterson, J. J. Zhao, A. D. Howard, P. R. Griffin, K.
T. Chapman, Biochemistry 1994, 33, 3934; e) J. C. Powers, J. L. Asgian, Ö. D.
Ekici, K. E. James, Chem. Rev. 2002, 102, 4639; f) L. I. Willems, W. A. Van
der Linden, N. Li, K. Y. Li, N. Liu, S. Hoogendoorn, G. A. Van Der Marel, B. I.
Florea, H. S. Overkleeft, Acc. of Chem. Res. 2011, 44, 718; g) D. K. Nomura,
M. M. Dix, B. F. Cravatt, Nat. Rev. Cancer 2010, 10, 630.
[3] J. Singh, R. C. Petter, T. A. Baillie, A. Whitty, Nat. Rev. Drug. Discov. 2011,
10, 307.
[4] S. M. Marino, V. N. Gladyshev, J. Mol. Biol. 2010, 404, 902.
[5] N. J. Pace, E. Weerapana, ACS. Chem. Biol. 2013, 8, 283.
[6] a) E. Basle, N. Joubert, M. Pucheault, Chem. Biol. 2010, 17, 213; b) O.
Boutureira, G. J. Bernardes, Chem. Rev. 2015, 115, 2174.
[7] a) L. Faleiro, R. Kobayashi, H. Fearnhead, Y. Lazebnik, EMBO. J. 1997,
16, 2271; b) A. B. Berger, M. D. Witte, J. B. Denault, A. M. Sadaghiani, K. M.
Sexton, G.S. Salvesen, M. Bogyo, Mol. Cell. 2006, 23, 509.
[8] D. Greenbaum, K. F. Medzihradszky, A. Burlingame, M. Bogyo, Chem.
Biol. 2000, 7, 569.
This article is protected by copyright. All rights reserved.