A. Nagao et al. / Journal of Molecular Structure 929 (2009) 43–47
47
[2] J.C. Netto-Ferreira, V. Wintgens, L.F.V. Ferreira, A.R. Garcia, L.M. Ilharco, M.J.
Lemos, J. Photochem. Photobiol. A Chem. 132 (2000) 209.
[3] O. Rajabi, F. Tayyari, R. Salai, S.F. Tayyari, J. Mol. Struct. 878 (2008)
78.
[4] A. Bertoluzza, M. Rossi, P. Taddei, E. REdenti, M. Zanol, P. Ventura, J. Mol. Struct.
480 (1999) 535.
[5] V. Barillaro, G. Dive, P. Bertholet, B. Evrard, L. Delattre, E. Ziémons, G. Piel, Int. J.
Pharm. 347 (2008) 62.
[6] L. Zhou, Z. Lin, C.J. Welch, Z. Ge, D. Ellison, Chirality 18 (2006) 306.
[7] N. Grancher, F. Kedzierewicz, V. Venard, A. Marsura, C. Finance, J. Le Faou, Incl.
Phenom. Macrocycl. Chem. 51 (2005) 149.
[8] L. Vrielynck, C. Lapouge, S. Marquis, J. Kister, N. Dupuy, Spectrochim. Acta 60A
(2004) 2553.
[9] S.-H. Choi, J.-W. Seo, S.-I. Nam, M.-S. Lee, K.-P. Lee, J. Incl. Phenom. Macrocycl.
Chem. 40 (2001) 279.
[10] S.-H. Choi, E.-N. Ryu, J.J. Ryoo, K.-P. Lee, J. Incl. Phenom. Macrocycl. Chem. 40
(2001) 271.
[11] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.
Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M.
Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.
Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Takajima, O. Kitao, H. Nakai,
M. Klene, X. Li, J.E. Knox, H.P. Hratchan, J.B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochteraki, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J.
Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O.
Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz,
Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-
Laham, C.Y. Peng, A. Nanayakkara, M. Challacomb, P.M. W. Gill, B. Johnson,
W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02,
Gaussian, Inc., Wallingford, CT, 2004.
5. Conclusions
A detailed investigation of the band shifts upon formation of the
inclusion complex and upon a change in the cavity size of CD re-
vealed that the charge distribution of monosubstituted toluene
derivatives determines the orientations and depths of inclusion in
the CD cavity. The orientation of a guest molecule in CD is deter-
mined not by the steric effect of the functional group, but mainly
by the electronic character of the functional group. This finding is ex-
pected to be useful in discussing the guest orientation in CD. Future
work will involve measuring Raman spectra of the inclusion com-
plexes to confirm the present conclusions. Only the band shifts of
the guest molecules were examined in the present study, because
they were expected to contain information on the orientation of
the guest in CD. Examination of the observed shifts in the bands
due to the host molecules will also be examined in the future.
Acknowledgements
This work was supported in part by Dr. Keiji Terao of Cyclo-
Chem Co., Ltd., Japan. The authors also appreciate Prof. Yoshiaki
Hamada and Mr. Ei-ichi Masuko of University of the Air, Japan
for their technical assistance and helpful discussions.
References
[12] J. McMurry, Organic Chemistry, seventh ed., Thomson Brooks/Cole, Belmont,
CA, 2008 (Section 16).
[1] F.L. Dickert, S. Landgraf, R. Sikorski, J. Mol. Model. 6 (2000) 491.