8516 J. Am. Chem. Soc., Vol. 123, No. 35, 2001
Boger and Hong
Scheme 1
not only constitute a formal total synthesis of roseophilin but
also permit the absolute configuration assignment of 1 upon
condensation with 33. Thus, inverse electron demand Diels-
Alder reaction of the electron-deficient dimethyl 1,2,4,5-
tetrazine-3,6-dicarboxylate (7) with the optically active electron-
rich enol ether 6 was anticipated to provide 8 ideally
functionalized for elaboration to the pyrrole 9 for incorporation
into the tricyclic core. Formation of the triene 26 followed by
Grubbs’ ring closing metathesis (RCM)12 would serve to
introduce the 13-membered macrocycle on a nonstrained
precursor prior to subsequent 5-exo-trig acyl radical-alkene
cyclization that was anticipated to provide the strained cyclo-
pentanone, completing the preparation of the tricyclic core.
The starting, optically active electron-rich enol ether 6 was
prepared by LiAlH4 reduction of 3, derived from an Evans aldol
reaction of a chelated Ti(IV) enolate with s-trioxane14 followed
by O-benzyl ether formation, to provide 4 in 54% (Scheme 1).
TPAP oxidation15 of 4 (100%) and Wittig reaction of the
aldehyde 5 with Ph3PdCHOMe provided 6.
The key inverse electron demand Diels-Alder reaction of
the electron-deficient methyl 1,2,4,5-tetrazine-3,6-dicarboxylate
(7) with 6 proceeded effectively at room temperature to provide
the optically active 1,2-diazine 8 in excellent yield (Scheme
2). Moreover, the preparation of 8 was found to be most
convenient to conduct without purification of the intermediate
enol ether 6 and, following the Diels-Alder reaction, provided
8 in yields as high as 91% for the two steps. Thus, the
complementary match of the electron-rich dienophile 6 and the
electron-deficient 1,2,4,5-tetrazine 7 imparted by the substituents
provided a Diels-Alder reaction that proceeds effectively even
at room temperature. Reductive ring contraction of 8 effected
by treatment with Zn-TFA (25 °C, 1 h) gave the pyrrole 9 in
Figure 1.
of action to existing therapies suggests they could be used
synergistically in combination with existing drugs as well as in
an alternative immunosuppressive therapy on their own and has
provided further interest in developing synthetic routes to such
compounds.8 Because of our past studies on prodigiosin and
structurally related analogues,9 roseophilin emerged as a natural
and attractive synthetic target for us.
Our approach to roseophilin features both a 1,2,4,5-tetrazine
f 1,2-diazine f pyrrole Diels-Alder strategy10 for construction
of an appropriately functionalized pyrrole ring and a 5-exo-trig
acyl radical-alkene cyclization11 for formation of the cyclo-
pentanone found in the tricyclic core structure of 1 and is
summarized in Figure 1. Following disconnection of 1 into this
tricyclic core 32 and the heterocyclic side chain 33 defined in
the work of Fu¨rstner et al.,2e asymmetric synthesis of 32 would
(10) (a) Reviews: Boger, D. L. Tetrahedron 1983, 39, 2869. Boger, D.
L. Chem. ReV. 1986, 86, 781. Boger, D. L. Bull. Soc. Chim., Belg. 1990,
99, 599. Boger, D. L. Chemtracts: Org. Chem. 1996, 9, 149. Boger, D. L.;
Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis;
Academic: San Diego, 1987. (b) Boger, D. L.; Coleman, R. S.; Panek, J.
S.; Yohannes, D. J. Org. Chem. 1984, 49, 4405. Boger, D. L.; Patel, M. J.
Org. Chem. 1988, 53, 1405. Boger, D. L.; Baldino, C. M. J. Org. Chem.
1991, 56, 6942. Boger, D. L.; Baldino, C. M. J. Am. Chem. Soc. 1993,
115, 11418. Boger, D. L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin,
Q. J. Am. Chem. Soc. 1999, 121, 54. Boger, D. L.; Soenen, D. R.; Boyce,
C. W.; Hedrick, M. P.; Jin, Q. J. Org. Chem. 2000, 65, 2479.
(11) (a) Boger, D. L. Isr. J. Chem. 1997, 37, 119. (b) Boger, D. L.;
Mathvink, R. J. J. Org. Chem. 1988, 53, 3377. (c) Boger, D. L.; Mathvink,
R. J. J. Org. Chem. 1989, 54, 1777. (d) Boger, D. L.; Mathvink, R. J. J.
Am. Chem. Soc. 1990, 112, 4003. (e) Boger, D. L.; Mathvink, R. J. J. Am.
Chem. Soc. 1990, 112, 4008. (f) Boger, D. L.; Mathvink, R. J. J. Org. Chem.
1990, 55, 5442. (g) Boger, D. L.; Mathvink, R. J. J. Org. Chem. 1992, 57,
1429. (h) Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. ReV.
1999, 99, 1991.
(8) The prodigiosins also act as H+/Cl- symporters, see: Sato, T.; Konno,
H.; Tanaka, Y.; Kataoka, T.; Nagai, K.; Wasserman, H. H.; Ohkuma, S. J.
Biol. Chem. 1998, 273, 21455.
(9) (a) Wasserman, H. H.; McKeon, J. E.; Smith, L.; Forgione, P. J.
Am. Chem. Soc. 1960, 82, 506. Wasserman, H. H.; Keith, D. D.; Nadelson,
J. J. Am. Chem. Soc. 1969, 91, 1264. (b) Rapoport, H.; Holden, K. G. J.
Am. Chem. Soc. 1962, 84, 635. (c) Boger, D. L.; Patel. M. J. Org. Chem.
1988, 53, 1405. Boger, D. L.; Patel, M. Tetrahedron Lett. 1987, 28, 2499.
(d) Wasserman, H. H.; Lombardo, L. J. Tetrahedron Lett. 1989, 30, 1725.
(e) D’Alessio, R.; Rossi, A. Synlett 1996, 513. (f) Fu¨rstner, A.; Szillat, H.;
Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305. (g) Wasserman,
H. H.; Petersen, A. K.; Xia, M.; Wang, J. Tetrahedron Lett. 1999, 40, 7587.
(h) Fu¨rstner, A.; Grabowski, J.; Lehmann, C. W. J. Org. Chem. 1999, 64,
8275. (i) Fu¨rstner, A.; Krause, H. J. Org. Chem. 1999, 64, 8281 and
references cited therein.
(12) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.
(13) Boger, D. L.; Panek, J. S.; Coleman, R. S.; Sauer, J.; Huber, F. X.
J. Org. Chem. 1985, 50, 5377. Boger, D. L.; Panek, J. S.; Patel, M. Org.
Synth. 1991, 70, 79.
(14) Evans, D. A.; Urpi, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T.
J. Am. Chem. Soc. 1990, 112, 8215.
(15) Griffith, W. P.; Ley, S. V. Aldrichimica Acta 1990, 23, 13.