5966 J . Org. Chem., Vol. 66, No. 18, 2001
Totani et al.
reactions, such as polar, radical-mediated, and pericyclic
carbon-carbon bond-forming reactions.9 In the field of
current organic synthesis, one of the significant develop-
ments is the use of stereoselective 1,4-additions10 in the
preparation of optically active chiral compounds, which
are achieved by using a variety of chiral auxiliaries. In
the early 1980s, Oppolzer et al. reported the 1,4-addition
of an organocopper reagent to chiral enoates prepared
from (-)-8-phenylmenthol and later to chiral enoates
prepared from their camphor-derived sultam.11 Tomioka
and Koga demonstrated the 1,4-addition of organocopper
reagents to an unsaturated amide attaching a chiral
auxiliary prepared from L-glutamic acid.12 In the early
1990s, Evans et al. reported the effectiveness of their
chiral acyloxazolidinone-derived enolates as Michael
donors. The donors reacted with representative electro-
philic olefins.13 Kunz et al. reported the 1,4-addition of
organoaluminum reagents to Evans oxazolidinone-type
auxiliary-bonded unsaturated carboxylates.14 The Lewis
acid-promoted 1,4-addition of allyltrimethylsilane to
analogous unsaturated N-acylamides was also investi-
gated.15 Enders et al. demonstrated the utility of their
chiral auxiliaries SAMP/RAMP for asymmetric 1,4-ad-
dition reactions.16 The development of highly stereo-
selective 1,4-additions using chiral auxiliaries is still
being extensively explored.17 Asymmetric 1,4-additions
based on the carbohydrate-derived auxiliaries have also
been investigated in this decade.18 In this paper, we
describe the results of the diastereoselective 1,4-addition
of a variety of organocuprates to 3-O-, 4-O-, or 6-O-
crotonyl derivatives of three methyl R-D-hexopyrano-
sides.19-22
Resu lts a n d Discu ssion
Dia ster eoselective 1,4-Ad d ition of a Vin ylcu p r a te
to r,â-Un sa tu r a ted Ester s In cor p or a ted in to Meth yl
r-D-Glu cop yr a n osid e. To explore feasibility and dia-
stereoselectivity in the 1,4-addition of a vinyl group to
hexopyranosidic templates, we designed a variety of 4-O-
crotonyl derivatives of methyl R-D-glucopyranoside as the
substrates.23 First, we prepared three 6-iodo-4-O-crotonyl
esters 9-11 from known methyl 2,3-di-O-protected R-D-
glucopyranosides 1,24 2,25 and 3,26 as shown in Scheme
1. Thus, preferential tosylation of 6-OH in 1-3 provided
the respective primary tosylates 4-6. The introduction
of a crotonyl ester at C-4 was carried out for 4 or 5 by
acylation with crotonic anhydride. The resulting 4-O-
(7) (a) Felber, H.; Kresze, G.; Prewo, R.; Vasella, A. Helv. Chim. Acta
1986, 69, 1137-1146. (b) Gupta, R. C.; Larsen, D. S.; Stoodley, R. J .;
Slawin, A. M. Z.; Williams, D. J . J . Chem. Soc., Perkin Trans. 1 1989,
739-749. (c) Kunz, H.; Mu¨ller, B.; Schanzenbach, D. Angew. Chem.,
Int. Ed. Engl. 1987, 26, 267-269. (d) Shing, T. K. M.; Lloyd-Williams,
P. J . Chem. Soc., Chem. Commun. 1987, 423-424. (e) Lubineau, A.;
Queneau, Y. J . Org. Chem. 1987, 52, 1001-1007. (f) Lubineau, A.;
Queneau, Y. Tetrahedron 1989, 45, 6697-6712. (g) Arnold, T.; Orschel,
B.; Reissig, H.-U. Angew. Chem., Int. Ed. Engl. 1992, 31, 1033-1035.
(8) (a) Vasella, A.; Voeffray, R. Helv. Chim. Acta 1982, 65, 1953-
1964. (b) Huber, R.; Knierzinger, A.; Obrecht, J .-P.; Vasella, A. Helv.
Chim. Acta 1985, 68, 1730-1747. (c) Mzengeza, S.; Whitney, R. A. J .
Org. Chem. 1988, 53, 4074-4081.
(9) (a) Scho¨llkopf, U.; To¨lle, R.; Egert, E.; Nieger, M. Liebigs Ann.
Chem. 1987, 399-405. (b) Kunz, H.; Mohr, J . J . Chem. Soc., Chem.
Commun. 1988, 1315-1317. (c) Duhamel, L.; Angibaud, P.; Desmurs,
J . R.; Valnot, J . Y. Synlett 1991, 807-808. (d) Laschat, S.; Kunz, H. J .
Org. Chem. 1991, 56, 5883-5889. (e) Cintas, P. Tetrahedron 1991, 47,
6079-6111. (f) Reissig, H.-U. Angew. Chem., Int. Ed. Engl. 1992, 31,
288-290. (g) Kunz, H.; Ru¨ck, K. Angew. Chem., Int. Ed. Engl. 1993,
32, 336-358. (h) Ganz, I.; Kunz, H. Synthesis 1994, 1353-1358. (i)
Kunz, H. Pure Appl. Chem. 1995, 67, 1627-1635. (j) Bols, M.
Carbohydrate Building Blocks; J ohn Wiley and Sons: New York, 1996.
(k) Kishida, M.; Eguchi, T.; Kakinuma, K. Tetrahedron Lett. 1996, 37,
2061-2062. (l) Schumacher, R.; Reissig, H.-U. Synlett 1996, 1121-
1122. (m) Hultin, P. G.; Earle, M. A.; Sudharshan, M. Tetrahedron
1997, 53, 14823-14870. (n) Chika, J .; Takei, H. Tetrahedron Lett. 1998,
39, 605-608. (o) Ferreira, M. L. G.; Pinheiro, S.; Perrone, C. C.; Costa,
P. R. R.; Ferreira, V. R. Tetrahedron: Asymmetry 1998, 9, 2671-2680.
(p) Enholm, E. J .; J iang, S. J . Org. Chem. 2000, 65, 4756-4758.
(10) For representative reviews on this subject, see: (a) Oare, D.
A.; Heathcock, C. H. Top. Stereochem. 1989, 19, 227-407. (b) Oare,
D. A.; Heathcock, C. H. Top. Stereochem. 1991, 20, 87-170. (c) Rossiter,
B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771-806. (d) Perlmutter,
P. Conjugate Addition Reactions in Organic Synthesis; Pergamon
Press: Oxford, 1992. (e) Noyori, R. Asymmetric Catalysts in Organic
Synthesis; J ohn Wiley and Sons: New York, 1994; pp 207-212. (f)
Alexakis, A. In Organocopper Reagents, A Practical Approach; Taylor,
R. J . K., Ed.; Oxford University Press: Oxford, U.K., 1994; pp 159-
183. (g) Feringa, B. L.; de Vries, A. H. M. In Advances in Catalytic
Processes; Doyle, M. P., Ed.; J AI Press Inc.: Greenwich, CT, 1995; Vol.
1, pp 151-192. (h) Tomioka, K.; Nagaoka, Y. In Comprehensive
Asymmetric Catalysis; J acobsen, E., Pfaltz, A., Yamamoto, H., Eds.;
Springer: Berlin, 1999; Vol. 3, Chapter 31.
(16) (a) Enders, D.; Papadopoulos, K.; Herdtweck, E. Tetrahedron
1993, 49, 1821-1830. (b) Enders, D.; Heider, K.-J .; Raabe, G. Angew.
Chem., Int. Ed. Engl. 1993, 32, 598-601.
(17) (a) Ambroise, L.; Desmae¨le, D.; Mahuteau, J .; d'Angelo, J .
Tetrahedron Lett. 1994, 35, 9705-9708. (b) Krause, N.; Gerold, A.
Angew. Chem., Int. Ed. Engl. 1997, 36, 186-204. (c) Williams, D. R.;
Kissel, W. S.; Li, J . J . Tetrahedron Lett. 1998, 39, 8593-8596. (d)
Ezquerra, J .; Prieto, L.; Avendano, C.; Martos, J . L.; de la Cuesta, E.
Tetrahedron Lett. 1999, 40, 1575-1578. (e) Hanessian, S.; Gomtsyan,
A.; Malek, N. J . Org. Chem. 2000, 65, 5623-5631.
(18) (a) Hon, Y.-S.; Chen, F.-L.; Huang, Y.-P.; Lu, T.-J . Tetrahe-
dron: Asymmetry 1991, 2, 879-882. (b) Ru¨ck, K.; Kunz, H. Synlett
1992, 343-344. (c) Ru¨ck, K.; Kunz, H. Synthesis 1993, 1018-1028.
(d) Ru¨ck-Braun, K.; Stamm, A.; Engel, S.; Kunz, H. J . Org. Chem. 1997,
62, 967-975. (e) Chiappe, C.; Moro, G. L.; Munforte, P. Tetrahedron:
Asymmetry 1997, 8, 2311-2317. (f) Pinheiro, S.; Pedraza, S. F.; Peralta,
M. A.; Carvalho, E. M.; Farias, F. M. C.; Ferreira, V. F. J . Carbohydr.
Chem. 1998, 17, 901-913. (g) Becker, B.; Thiem, J . Carbohydr. Res.
1998, 308, 77-84. (h) Follmann, M.; Kunz, H. Synlett 1998, 989-990.
(i) Desai, V. N.; Saha, N. N.; Dhavale, D. D. Chem. Commun. 1999,
1719-1720.
(19) Some of the results described herein have been presented at
the 19th International Carbohydrate Symposium (University of Cali-
fornia, San Diego, August 9-14, 1998), at the 36th National Organic
Chemistry Symposium (University of WisconsinsMadison, J une 13-
17, 1999), and at the 20th International Carbohydrate Symposium
(University of Hamburg, August 29-September 1, 2000).
(20) Some parts of the present work have been preliminarily
communicated. See: Totani, K.; Nagatsuka, T.; Takao, K.; Ohba, S.;
Tadano, K. Org. Lett. 1999, 1, 1447-1450.
(21) For our report on the stereoselective 1,4-addition of an alkyl
radical species to the D-glucose-based templates, see: Munakata, R.;
Totani, K.; Takao, K.; Tadano, K. Synlett 2000, 979-982.
(22) For our report on the stereoselective Diels-Alder reaction
achieved on some hexopyranosidic templates, see: Nagatsuka, T.;
Yamaguchi, S.; Totani, K.; Takao, K.; Tadano, K. Synlett 2001, 481-
484.
(23) We also explored the reactivity and stereoselectivity in the 1,4-
addition of two 3-O-crotonyl derivatives: methyl 2-O-benzyl-4,6-O-
benzylidene-3-O-crotonyl-R-D-glucopyranoside and methyl 2,4,6-tri-O-
benzyl-3-O-crotonyl-R-D-glucopyranoside. Under reaction conditions
similar to those used for the 4-O-crotonyl derivatives, the former 3-O-
crotonyl derivative gave the 1,4-vinyl adduct as a 62:38 diastereomeric
mixture (1H NMR analysis) in 75% yield. The latter gave the 1,4-adduct
as an approximately 1:1 diastereomeric mixture (88%). In both cases,
a useful level of stereoselectivity could not be obtained. Therefore, we
focused our interest on the substrates in which the reaction site was
installed on 4-OH or 6-OH. To date, we have not conducted 1,4-
additions using any 2-O-crotonyl derivatives.
(11) (a) Oppolzer, W.; Moretti, R.; Godel, T.; Meunier, A.; Lo¨her, H.
Tetrahedron Lett. 1983, 24, 4971-4974. (b) Oppolzer, W.; Kingma, A.
J .; Poli, G. Tetrahedron 1989, 45, 479-488.
(12) Tomioka, K.; Suenaga, T.; Koga, K. Tetrahedron Lett. 1986, 27,
369-372.
(13) Evans, D. A.; Bilodeau, M. T.; Somers, T. C.; Clardy, J .; Cherry,
D.; Kato, Y. J . Org. Chem. 1991, 56, 5750-5752.
(24) Tomic-Kulenovic, S.; Keglevic, D. Carbohydr. Res. 1980, 85,
302-306.
(14) Ru¨ck, K.; Kunz, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 694-
(25) Yoshimoto, K.; Itatani, Y.; Shibata, K.; Tsuda, Y. Chem. Pharm.
Bull. 1980, 28, 208-219.
696.
(15) Wu, M.-J .; Wu, C.-C.; Lee, P.-C. Tetrahedron Lett. 1992, 33,
2547-2548.
(26) Hull, D. M. C.; Orchard, P. F.; Owen, L. N. Carbohydr. Res.
1977, 57, 51-63.