the corresponding nitrile, at least two viable synthetic routes
can be envisaged, i.e., a prior transformation of the alcohol
into the corresponding halide or related compounds that have
good leaving potential followed by cyanation or, alterna-
tively, via direct conversion of the corresponding alcohols
using various cyanating reagent systems.13 Although direct
cyanation of alcohols constitutes a particularly attractive
synthetic route to nitriles in terms of both starting material
accessibility and economy concerns, unfortunately many of
the direct cyanation protocols developed suffered from
shortcomings such as the use of stoichiometric activating
reagents and (or) tedious workup procedures, which would
to some extent hamper their practical utilizations.13
as FeX3, BiX3, or InX3, etc. X ) Cl, Br, or OTf) have been of
much research interest. In these reactions, the hydroxyls in
alcohols can be directly substituted by the desired nucleophiles
without the need for prior transformation into the groups that
have good leaving potentials. It has been assumed that at least
in some of these reactions the alcohols are activated toward
nucleophilic substitution by interaction with the oxophilic Lewis
acids.14c Inspired by these results, we envisaged that a direct
transformation of alcohols to the corresponding R-aryl nitriles
might also be feasible in the presence of a suitable Lewis acidic
catalyst/cyanating agent combination. Herein, we report an
InX314a-c,15a,19 catalyzed cyanation protocol for R-aryl al-
cohols using TMSCN (trimethylsilyl cyanide) as the cyanat-
ing agent, affording the corresponding R-aryl nitriles effi-
ciently in high yields under mild reaction conditions.
The work was started by testing the cyanation of allylic
alcohol 5a with TMSCN in dichloromethane in the presence
of a catalytic amount (10 mol %) of FeCl3. The reaction
proceeds smoothly at room temperature with complete substrate
conversion in 30 min, albeit with only a moderate yield of
isolated allylic cyanide 6a (41%). Encouraged by this result,
various Lewis acids as well as the reaction conditions were
further screened for the catalysis (Table 1). As shown in Table
Recently, direct substitutions of the hydroxyl group in
alcohols by various nucleophiles such as allyl-, alkynyl-, and
propargylsilanes,14 1,3-dicarbonyl compounds,15 amides16 or
amines,17 and so on18 under the catalysis of Lewis acids (such
(8) (a) Kuo, C. W.; Zhu, J. L.; Wu, J. D.; Chu, C. M.; Yao, C. F.; Shia,
K. S. Chem. Commun. 2007, 301–303. (b) Narsaiah, A. V.; Nagaiah, K.
AdV. Synth. Catal. 2004, 346, 1271–1274.
(9) Yan, M.; Xu, Q.-Y.; Chan, A. S. C. Tetrahedron: Asymmetry 2000,
11, 845–849.
(10) Mermerian, A. H.; Fu, G. C. Angew. Chem., Int. Ed. 2005, 44,
949–952.
(11) (a) Wu, L.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 15824–
15832. (b) You, J.; Verkade, J. G. Angew. Chem., Int. Ed. 2003, 42, 5051–
5053. (c) You, J.; Verkade, J. G. J. Org. Chem. 2003, 68, 8003–8007.
(12) (a) Caron, S.; Vazquez, E.; Wojcik, J. M. J. Am. Chem. Soc. 2000,
122, 712–713. (b) De Luca, L.; Giacomelli, G. Synlett 2004, 2180–2184.
(c) Loupy, A.; Philippon, N.; Pigeon, P.; Sansoulet, J.; Galons, H. Synth.
Commun. 1990, 20, 2855–2864. (d) Makosza, M.; Podraza, R.; Kwast, A.
J. Org. Chem. 1994, 59, 6796–6799. (e) Sommer, M. B.; Begtrup, M.;
Bøgesø, K. P. J. Org. Chem. 1990, 55, 4817–4821.
Table 1. Optimization of the Reaction Conditions for Lewis
Acid Catalyzed Cyanation of 5aa
(13) (a) Brett, D.; Downie, I. M.; Lee, J. B. J. Org. Chem. 1967, 32,
855–856. (b) Biogegrain, R.; Castro, B. R.; Selve, C. Tetrahedron Lett. 1975,
16, 2529–2530. (c) Camps, F.; Gasol, V.; Guerrero, A. Synth. Commun.
1988, 18, 445–452. (d) Davis, R.; Untch, K. G. J. Org. Chem. 1981, 46,
2985–2987. (e) Hughes, D. L. Org. React. 1992, 42, 358–359. (f) Mori, N.;
Togo, H. Synlett 2005, 1456–1458. (g) Iida, S.; Togo, H. Synlett 2007, 407–
410. (h) Iranpoor, N.; Firouzabadi, H.; Akhlaghinia, B.; Nowrouzi, N. J.
Org. Chem. 2004, 69, 2562–2564. (i) Kanai, T.; Kanagawa, Y.; Ishii, Y. J.
Org. Chem. 1990, 55, 3274–3277. (j) Mizuno, A.; Hamada, Y.; Shioiri, T.
Synthesis 1980, 1007–1009. (k) Schwartz, M. A.; Zoda, M.; Vishnuvajjala,
B.; Mami, I. J. Org. Chem. 1976, 41, 2502–2503. (l) Soltani Rad, M. N.;
Khalafi-Nezhad, A.; Behrouz, S.; Faghihi, M. A. Tetrahedron Lett. 2007,
48, 6779–6784.
TMSCN
(equiv)
time
(h)
yield
(%)b
entry
cat.
solvent
CH2Cl2
1
FeCl3
BiCl3
BiBr3
AuCl3
In(OTf)3
InCl3
InBr3
/
InBr3
InBr3
InBr3
InBr3
InBr3
InBr3
InBr3
InBr3
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
0.5
0.5
0.5
2
41
88
73
82
78
93
98
0
67
trace
23
81
99
87
41
95
2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
THF
dioxane
toluene
ClCH2CH2Cl
CH3CN
n-hexane
CH2Cl2
3
4
5
2
6
0.5
0.1
10
0.5
2
7
(14) (a) Yasuda, M.; Saito, T.; Ueba, M.; Baba, A. Angew. Chem., Int.
Ed. 2004, 43, 1414–1416. (b) Saito, T.; Yasuda, M.; Baba, A. Synlett 2005,
1737–1739. (c) Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. J. Org.
Chem. 2006, 71, 8516–8522. (d) Georgy, M.; Boucard, V.; Campagne, J. M.
J. Am. Chem. Soc. 2005, 127, 14180–14181. (e) Braun, M.; Kotter, W.
Angew. Chem., Int. Ed. 2004, 43, 514–517. (f) Zhan, Z. P.; Yang, W. Z.;
Yang, R. F.; Yu, J. L.; Li, J. P.; Liu, H. J. Chem. Commun. 2006, 3352–
3354. (g) Zhan, Z. P.; Yu, J. L.; Liu, H. J.; Cui, Y. Y.; Yang, R. F.; Yang,
W. Z.; Li, J. P. J. Org. Chem. 2006, 71, 8298–8301. (h) Rubin, M.;
Gevorgyan, V. Org. Lett. 2001, 3, 2705–2707.
8
9
10
11
12
13
14
15
16c
2
0.5
0.5
0.5
5
1
(15) (a) Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006,
45, 793–796. (b) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W. AdV.
Synth. Catal. 2006, 348, 1033–1037. (c) Liu, P. N.; Zhou, Z. Y.; Lau, C. P.
Chem.-Eur. J. 2007, 13, 8610–8619. (d) Noji, M.; Konno, Y.; Ishii, K. J.
Org. Chem. 2007, 72, 5161–5167. (e) Rueping, M.; Nachtsheim, B. J.;
Kuenkel, A. Org. Lett. 2007, 9, 825–828. (f) Jana, U.; Biswas, S.; Maiti, S.
Tetrahedron Lett. 2007, 48, 4065–4069. (g) Huang, W.; Wang, J.; Shen,
Q.; Zhou, X. Tetrahedron Lett. 2007, 48, 3969–3973.
a All the reactions were carried out by dropwise addition of a solution
of 5a in the specified solvent to a stirred suspension of TMSCN and the
metal salt (10 mol %) in the same solvent over 30 min (or less), and the
resulting mixtures were stirred therein at room temperature for the specified
time periods. b Yield of the isolated product. c 0.05 equiv of InBr3 was used.
(16) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Angew.
Chem., Int. Ed. 2007, 46, 409–413.
1, the bismuth(III) halides (BiCl3 or BiBr3) are more efficient
for the reaction than FeCl3, affording the target nitrile in good
(17) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew.
Chem., Int. Ed. 2007, 46, 3139–3143.
(18) (a) Yasuda, M.; Yamasaki, S.; Onishi, Y.; Baba, A. J. Am. Chem.
Soc. 2004, 126, 7186–7187. (b) Liu, J.; Muth, E.; Flo¨rke, U.; Henkel, G.;
Merz, K.; Sauvageau, J.; Schwake, E.; Dyker, G. AdV. Synth. Catal. 2006,
348, 456–462. (c) Vicennati, P.; Cozzi, P. G. Eur. J. Org. Chem. 2007,
224, 8–2253. (d) Toshimitsu, A.; Nakano, K.; Mukai, T.; Tamao, K. J. Am.
Chem. Soc. 1996, 118, 2756–2757.
(19) For references on In(III)-catalyzed reactions, see: (a) Lin, M. J.;
Loh, T. P. J. Am. Chem. Soc. 2003, 125, 13042–13043. (b) Zhao, J. F.;
Zhao, Y. J.; Loh, T. P. Chem. Commun. 2008, 1353–1355. (c) Liu, F.; Loh,
T. P. Org. Lett. 2007, 9, 2063–2066. (d) Onishi, Y.; Ogawa, D.; Yasuda,
M.; Baba, A. J. Am. Chem. Soc. 2002, 124, 13690–13691.
4574
Org. Lett., Vol. 10, No. 20, 2008