B. C. H. May, A. D. Abell / Tetrahedron Letters 42 (2001) 5641–5644
5643
mination of an a-keto tetrazole-based peptidomimetic
and is the principle supporting data for the assignment
of the regiochemistry of the tetrazole products. In the
structure of 8 it is apparent that the tetrazole ring is
essentially planar with the ring torsion angles,
6. Hori, H.; Tasutake, A.; Minematsu, Y.; Powers, J. C. In
Peptides, Structure and Function; Deber, C. M.; Hruby,
V. J.; Kopple, K. D., Eds.; Pierce, Rockford, Illinois,
1985; p. 819.
7. Slee, D. H.; Laslo, K. L.; Elder, J. H.; Ollman, I. R.;
Gustchina, A.; Kervinen, J.; Zdanov, A.; Wlodawer, A.;
Wong, C.-H. J. Am. Chem. Soc. 1995, 117, 11867.
8. Angelastro, M. R.; Peet, N. P.; Bey, P. J. Org. Chem.
1989, 54, 3913.
C5ꢀN1ꢀN2ꢀN3,
N1ꢀN2ꢀN3ꢀN4,
N2ꢀN3ꢀN4ꢀC5,
N3ꢀN4ꢀC5ꢀN1, N4ꢀC5ꢀN1ꢀN2 being −0.3(4), 0.0(4),
0.3(4), −0.6(4) and 0.5(4)°, respectively. The tetrazole
ring of 8 showed a mean deviation from the plane of
,
0.002 A. The bond lengths of the tetrazole ring are all
9. Edwards, P. D.; Wolanin, D. J.; Andisik, D. W.; Davis,
similar, with the C5ꢀN1, N1ꢀN2, N2ꢀN3, N3ꢀN4,
M. W. J. Med. Chem. 1995, 38, 76.
10. Bavetsias, V.; Bisset, G. M. F.; Kimbell, R.; Boyle, F. T.;
Jackman, A. L. Tetrahedron 1997, 53, 13383.
N4ꢀC5, being, 1.345(4), 1.325(4), 1.351(3), 1.327(3),
,
and 1.352(4) A, respectively. The a-keto carbonyl bond
sits in the same plane as the tetrazole ring, with the
O18ꢀC17ꢀC5ꢀN4 and O18ꢀC17ꢀC5ꢀN4 torsion angles
being −178.1(3) and −0.1 (5)°, respectively. The core
isostere [C17···C6] is essentially planar, with a mean
11. Boyle, F. T.; Crook, J. W.; Matusiak, Z. S. UK Pat.
GB2272217A1, 1994; Chem. Abstr. 1995, 122, 160665.
12. Satoh, Y.; Moliterni, J. Synlett 1998, 528.
13. 4a and 4b: 1H NMR (300 MHz, CD3OD, for the mixture)
l 1.23, 1.26 (9H, s, Boc-(CH3)3), 2.90 (2H, AB system,
lA=2.76, lB=3.03, dd, J=6.9, 13.2 Hz, Phe-b-H2), 4.07,
4.12 (1H, m, Phe-a-H), 5.01 (1H, d, J=6.6 Hz, NH),
,
deviation from the plane of 0.013 A. The C17ꢀC5 and
N2ꢀC6 bonds are offset by −10°. The phenylalanine
ring is essentially planar and sits in a flagpole position
over the tetrazole heterocycle.
5.08, 5.13 (1H, bs, Phe-a-H), 7.17–7.28 (5H, m, ArH). 13
C
NMR (75 MHz, CD3OD, for the mixture) l 28.36, 28.82
(Boc-(CH3)3), 38.37, 39.52 (Phe-b-CH2), 57.77, 59.42
(Phe-a-CH), 67.22, 69.01 (Phe-CHOH), 80.50, 80.55
(Boc-C(CH3)3), 127.46, 127.67, 129.43, 129.63, 130.50
(ArCH), 139.38, 139.39 (ArC), 157.51 (CN4), 159.99,
160.02 (Boc-CO). ES MS 320.1721 C15H22N5O3 (MH+)
requires m/z 320.1723.
In this letter we have presented a short route to some
new conformationally restricted peptidomimetics, the
design of which is based on novel a-keto 1,5- and
2,5-disubstituted tetrazole [COCN4] amide bond
isosteres. We have also unequivocally assigned struc-
tures to the resulting 1,5- and 2,5-disubstituted tetrazole
isomers, a problem that is often encountered in tetra-
zole-based chemistry, using a combination of NMR
and X-ray crystallography.
14. 5a, 5b, 6a, and 6b: A solution of 1H-tetrazole as a
mixture of 4a and 4b (1.0 equiv., 110 mg, 0.35 mmol) in
dry CH2Cl2 (5 mL) was prepared in a flame-dried flask
under Ar. DIPEA (3.0 equiv., 130 mg, 1.04 mmol, 175
mL) was added dropwise to the stirred solution at rt.
After 5 min benzyl bromoacetate (2.0 equiv., 160 mg,
0.70 mmol, 110 mL) was added dropwise and the reaction
was stirred for 24 h. The reaction was diluted with ethyl
acetate (20 mL), washed with 10% aqueous HCl (2×10
mL), 1 M aqueous NaOH (2×10 mL), saturated aqueous
NaCl (10 mL), dried (MgSO4), filtered and evaporated.
The crude reaction product was purified by flash column
chromatography (40% ethyl acetate/petroleum ether) to
give a-hydroxy tetrazoles, 5a, 5b, 6a and 6b (127 mg,
Acknowledgements
The work was supported by a Royal Society of New
Zealand Marsden grant.
References
1
77%), which were not separated. Selected H NMR (300
1. (a) Abell, A. D.; Foulds, G. J. Chem. Soc., Perkin Trans.
1 1997, 2475; (b) Foulds, G. J. Biologically Active Peptide
Analogues, Ph.D. thesis, University of Canterbury, 1996;
(c) May, B. C. H. Conformationally Restricted Pepti-
domimetics, Ph.D. thesis, University of Canterbury, 2000.
2. (a) Marshall, G. R.; Humblet, C.; van Opdenbosch, N.;
Zabrocki, J. In Peptides: Synthesis, Structure, Function;
Proceedings of the Seventh American Peptide Symposium;
Rich, D. H.; Gross, E., Eds.; Pierce, Rockford, Illinois,
1981; p. 669; (b) Zabrocki, J.; Smith, G. D.; Dunbar, J.
B.; Iijima, H.; Marsahll, G. R. J. Am. Chem. Soc. 1988,
110, 5875.
3. Angelastro, M. R.; Mehdi, S.; Burkhart, J. P.; Peet, N.
P.; Bey, P. J. Med. Chem. 1990, 33, 13.
4. Chetterjee, S.; Dunn, D. D.; Tao, M.; Wells, G.; Gu,
Z-Q.; Bihovsky, R.; Ator, M. A.; Siman, R.; Mallamo, J.
P. Bioorg. Med. Chem. Lett. 1999, 9, 2371.
MHz, CDCl3, for the mixture) l 1.32 (9H, bs, Boc-
(CH3)3), 3.04 (2H, m, Phe-b-H2), 4.20 (1H, m, Phe-a-H),
4.96 (1H, d, J=6.6 Hz, NH), 5.06 (1H, d, J=3.0 Hz,
Phe-CHOH), 5.14 (1H, d, J=5.1 Hz, Phe-CHOH), 5.20
(2H, bs, Bn-H2), 5.41 (2H, bs, Gly-a-H2), 7.17–7.36 (10H,
m, ArH). TLC (analytical, 40% ethyl acetate/petroleum
ether) Rf=0.17.
15. Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett,
R.; Carroll, R. M.; Straub, J. A.; Tkacz, J. N.; Wu, C.;
Musso, G. F. J. Med. Chem. 1994, 37, 2918.
1
16. 7: (41 mg, 30%), eluted first as a clear oil. H NMR (300
MHz, CDCl3) l 1.35 (9H, s, Boc-(CH3)3), 3.22 (2H, AB
system, lA=3.07, lB=3.37, dd, J=8.1, 14.1 Hz, Phe-b-
H2), 5.12 (1H, d, J=6.6 Hz, NH), 5.21 (2H, d, J=4.8 Hz,
Bn-H2), 5.42 (1H, m, Phe-a-H), 5.47 (2H, d, J=3.0 Hz,
Gly-a-H2), 7.13–7.38 (10H, m, ArH). 13C NMR (75
MHz, CDCl3) l 27.97 (Boc-(CH3)3), 37.02 (Phe-b-CH2),
50.11 (Gly-a-CH2), 59.48 (Phe-a-CH) 68.14 (Bn-CH2),
80.25 (Boc-C(CH3)3), 124.03, 127.06, 128.38, 128.55,
128.68, 129.18 (ArCH), 134.14, 135.13 (ArC), 148.09
5. Peet, N. P.; Burkhart, J. P.; Angelastro, M. R.; Giroux,
E. L.; Mehdi, S.; Bey, P.; Kolb, M.; Neises, B.; Schirlin,
D. J. Med. Chem. 1990, 33, 394.