212
H. Y. Han et al. / Tetrahedron Letters 47 (2006) 209–212
sponding allene derivatives in the nonfluorinated sys-
tem,18 there has been no report on the synthesis of triflu-
oromethylated allenes directly from trifluoromethylated
b-phenylthio substituted allylic bromides. It seems likely
that the reaction mechanism involves the formation of
b-sulfinylated allylic bromides, which quickly provides
the corresponding allylic radical to form 1-aryl-1-tri-
fluoromethylallenes 4 via b-elimination of sulfinyl radi-
cal. The results of these reactions are summarized in
Table 3.
with 4-bromo-1,1,1-trifluoro-2-(40-methoxy)phenyl-3-
phenylthio-2-butene 3g (0.202 g, 0.5 mmol), MCPBA
(0.260 g, 0.75 mmol, 50% technical purity) and methyl-
ene chloride (5 mL) and then heated to reflux for
12 h. After the reaction mixture was quenched with sat-
urated NaHCO3, and 10% NaHSO3, the reaction mix-
ture was extracted with methylene chloride twice. The
methylene chloride solution was dried over anhydrous
K2CO3 and chromatographed on SiO2 column. Elution
with a mixture of hexane and ethyl acetate (4:1) pro-
vided 0.190 g of 4g in 87% yield. 4g:oil:1H NMR
(CDCl3) d 7.90–6.67 (m, 4H), 4.77 (s, 2H), 3.85 (s,
3H); 19F NMR (CDCl3, internal standard CFCl3) d
ꢀ59.98 (s, 3F); MS, m/z (relative intensity) 214 (M+,
100), 199 (7), 171 (13), 151 (28), 145 (71), 130 (10), 102
(18); IR (neat) 3079, 2927, 2871, 1959, 1596, 1579,
A typical reaction procedure for the preparation of 4g is
as follows. A 25 mL two-neck round bottomed flask
equipped with a magnetic stirrer bar, a septum and
nitrogen tee connected to an argon source was charged
1497, 1384, 1261, 1156, 834 cmꢀ1
. Anal. Calcd
for C11H9F3O: C, 61.66; H, 4.24. Found: C, 61.58; H,
4.21.
Table 3. Preparation of 1-aryl-1-trifluoromethylallenes 4
F3C
R
CH2Br
SC6H5
F3C
R
MCPBA (1.5 equiv)
CH2Cl2, reflux, t h
C
C
CH2
C
C
Acknowledgements
3
4
This work was supported by Korea Research Founda-
tion Grant (KRF-2003-041-C00199).
Compounds
R
t (h)
Yield (%)a
4a
2
5
96
References and notes
4b
4c
78
74
1. The Chemistry of Allenes; Landor, S. R., Ed.; Academic
Press: New York, 1982; Vols. 1–3.
2. Schuster, H. F.; Coppola, G. M. Allenes in Organic
Synthesis; Wiley: New York, 1984.
3. Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A.
Chem. Rev. 2000, 100, 3067–3126.
4. Hashmi, A. S. K. Angew. Chem., Int. Ed. 2000, 39, 3590–
3593.
F3C
F3C
6
4d
4e
6
1
88
79
F
5. Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535–
544.
6. Burton, D. J.; Hartgraves, G. A.; Hsu, J. Tetrahedron Lett.
1990, 31, 3699–3702.
7. Bouillon, J. P.; Maliverney, C.; Merenyl, R.; Viehe, H. G.
J. Chem. Soc., Perkin Trans. 1 1991, 2147–2149.
8. Konno, T.; Tanikawa, M.; Ishihara, T.; Yamanaka, H.
Chem. Lett. 2000, 1360–1361.
9. Hoffmann-Roder, A.; Krause, N. Angew. Chem., Int. Ed.
2002, 41, 2933–2935.
10. Dear, R. E. A.; Gilbert, E. E. J. Org. Chem. 1968, 33, 819–
823.
11. Hanzawa, Y.; Kawagoe, K.; Yamada, A.; Kobayashi, Y.
Tetrahedron Lett. 1985, 26, 219–222.
12. Yoshimatsu, M.; Hibino, M. Chem. Pharm. Bull. 2000, 48,
1395–1398.
13. Werner, H.; Laubender, M.; Wiedemann, R.; Windmuller,
B. Angew. Chem., Int. Ed. 1996, 35, 1237–1239.
14. Werner, H.; Wiedemann, R.; Laubender, M.; Windmuller,
B.; Steinet, P.; Gevert, O.; Wolf, J. J. Am. Chem. Soc.
2002, 124, 6966–6980.
15. Jeong, I. H.; Min, Y. K.; Kim, Y. S.; Cho, K. Y.; Kim, K.
J. Bull. Korean Chem. Soc. 1991, 12, 355–356.
16. Jeong, I. H.; Min, Y. K.; Kim, Y. S.; Cho, K. Y.; Kim, K.
J. Bull. Korean Chem. Soc. 1993, 14, 309–311.
17. Jeong, I. H.; Park, Y. S.; Kim, M. S.; Song, Y. S. J.
Fluorine Chem. 2003, 120, 195–209.
H3CO
4f
12
12
6
81
87
87
87
83
86
81
84
4g
4h
4i
H3CO
H3C
6
H3C
Br
4j
6
4k
4l
Br
6
6
Cl
4mb
3
H3CS
c
4n
4o
CH3
n-C4H9
18
18
—
c
—
a Isolated yield.
b 3.5 equiv of MCPBA was used.
c Allene was not obtained, but vinyl sulfoxide was formed in high yield.
18. Delouvrie, B.; Lacote, E.; Fensterbank, L.; Malacria, M.
Tetrahedron Lett. 1999, 40, 3565–3568.