2556
A. Fernández-Mateos et al.
LETTER
aldehydes I (n = 0, 1, 2, 3) have been reported in the
tively. The alkenyl radicals from 6–9 activated with an
endo carbonyl group with respect to C=C afford 3-exo and
4-exo onto C=O, and 6-exo and 8-endo onto C=C cycliza-
tion compounds, respectively, as the major products. In
summary, we report new knowledge about radical cy-
clization selectivity and new procedures in the synthesis
of cyclic compounds, ranging from cyclopropanes to
cyclooctanes.
literature. (i) For aldehydes I, n = 0, see: Geyde, R. N.; Aura,
P. C.; Deck, K. Can. J. Chem. 1971, 49, 1764. (ii) For
aldehyde I, n = 1, see: Fernández-Mateos, A.; Lopéz Barba,
A. J. Org. Chem. 1995, 60, 3580. (iii) For aldehyde I, n = 2,
see: Fernández-Mateos, A.; Pascual Coca, G.; Rubio
González, R.; Tapia Hernández, C. J. Org. Chem. 1996, 61,
9097. (iv) The aldehyde I, n = 3, was obtained from I, n = 2,
by Wittig reaction with Ph3P=CHOCH3, followed by
treatment with HClO4 (60%) in THF. All compounds
synthesized are racemic, although only one enantiomer is
depicted (Figure 3). (b) The epoxyketones 6–9 were
obtained by a three-step sequence from the aldehydes I,
n = 0, 1, 2, 3: i) Grignard reaction with vinyl magnesium
bromide, ii) oxidation with Dess–Martin reagent, and iii)
epoxidation with mCPBA. (c) The structure of
Acknowledgment
Financial support for this work from the Ministerio de Ciencia y
Tecnología of Spain (PPQ2002-00290) is gratefully acknowledged.
We also thank the Junta de Castilla y León for the fellowship to
L.M.B., and the Ministerio de Ciencia y Tecnología for the fel-
lowships to E.M.M.N. and R.R.C.
epoxyketones 6–10, in which the oxiranic oxygen and the
side chain is cis, is based on spectroscopic data and
comparison with the epoxy compound described by K. Mori
et al., whose structure was determined by X-ray. See: Mori,
K.; Aki, S.; Kido, M. Liebigs Ann. Chem. 1993, 83.
References
(1) (a) Curran, D. P. In Comprehensive Organic Synthesis, Vol.
4; Trost, B. M.; Fleming, I.; Paquette, L. A., Eds.; Pergamon:
Oxford, 1991, 815. (b) Giese, B.; Kopping, B.; Göbel, T.;
Thoma, G.; Dickhaut, J.; Kulicke, K. J.; Trach, F. In Organic
Reactions, Vol. 48; Paquette, L. A., Ed.; Wiley: New York,
1996, 308. (c) Beckwith, A. L. J.; Hay, B. D. J. Am. Chem.
Soc. 1989, 111, 230. (d) Beckwith, A. L. J.; Hay, B. D. J.
Am. Chem. Soc. 1989, 111, 2674. (e) Beckwith, A. L. J.;
Raner, K. D. J. Org. Chem. 1992, 57, 4954. (f) Beckwith,
A. L. J. Tetrahedron 1981, 37, 3073.
(2) Srikrishna, A. In Radicals in Organic Synthesis, Vol. 2;
Renaud, P.; Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001,
151.
(3) (a) Ishibashi, H.; Sato, T.; Ikeda, M. Synthesis 2002, 695.
(b) Chatgilialoglu, C.; Ferreri, C.; Guerra, M. J. Am. Chem.
Soc. 2002, 124, 10765.
CHO
n
I , n = 0, 1, 2, 3
Figure 3
(10) General Procedure. A mixture of Cp2TiCl2 (2.2 mmol) and
Zn (3.0 mmol) in strictly deoxygenated THF (4 mL) was
stirred at r.t. until the red solution turned green. In a separate
flask, the epoxy compound (1.0 mmol) was dissolved in
strictly deoxygenated THF (10 mL). The green Ti(III)
solution was slowly added via cannula to the epoxide
solution. After 30 min, an excess of sat. NaH2PO3 was
added, and the mixture was stirred for 20 min. The product
was extracted into Et2O and washed with sat. NaHCO3 and
H2O. After removal of the solvent, the crude product was
purified by flash chromatography. All homolytic cleavages
were absolutely selective and always afforded the tertiary
radical.
(4) Bailey, W. F.; Longstaff, S. C. Org. Lett. 2002, 3, 2217.
(5) Fernández-Mateos, A.; Martín de la Nava, E.; Pascual Coca,
G.; Ramos Silvo, A.; Rubio González, R. Org. Lett. 1999, 1,
607.
(11) The relative configuration of the newly created stereocenters
has been assigned by spectroscopic data and H-C
(6) (a) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc.
1994, 116, 986. (b) Nugent, W. A.; RajanBabu, T. V. J. Am.
Chem. Soc. 1988, 110, 8561.
correlation, except for structures 7b, 8a, and 10b, whose
crystallographic data have been deposited with the
Cambridge Crystallographic Data Centre as supplementary
publication numbers CCDC 234516, 2345517 and 234515,
respectively. Spectroscopic data of three selected
(7) (a) Gansäuer, A.; Bluhm, H. Chem. Rev. 2000, 100, 2771.
(b) Gansäuer, A.; Lauterbach, T.; Narayan, S. Angew. Chem.
Int. Ed. 2003, 42, 5556. (c) Gansäuer, A.; Rinker, B.;
Pierobon, M.; Grimme, S.; Gerenkamp, M.; Mück-
Lichtenfeld, C. Angew. Chem. Int. Ed. 2003, 42, 3687.
(d) Gansäuer, A.; Pierobon, M.; Bluhm, H. Synthesis 2001,
2500. (e) Gansäuer, A.; Bluhm, H.; Pierobon, M. J. Am.
Chem. Soc. 1998, 120, 12849.
(8) (a) Yamada, H.; Hasegawa, T.; Tanaka, H.; Takahashi, T.
Synlett 2001, 1935. (b) Fuse, S.; Hanochi, M.; Doi, T.;
Takahashi, T. Tetrahedron Lett. 2004, 45, 1961.
(c) Barrero, A. F.; Cuerva, J. M.; Herrador, M. M.; Valdivia,
M. V. J. Org. Chem. 2001, 66, 4074. (d) Barrero, A. F.;
Oltra, J. E.; Cuerva, J. M.; Rosales, A. J. Org. Chem. 2002,
67, 2566. (e) Barrero, A. F.; Rosales, A.; Cuerva, J. M.;
Oltra, J. E. Org. Lett. 2003, 5, 1935. (f) Haïdour, A.; Oltra,
J. E.; Barrero, A. F.; Cardenas, D. J.; Cuerva, J. M. Chem.–
Eur. J. 2004, 10, 1778. (g) Ruano, G.; Grande, M.; Anaya, J.
J. Org. Chem. 2002, 67, 8243.
compounds:
1-(2-Hydroxy-1,5,5-trimethylbicyclo[4.1.0]hept-7-yl)-
propan-2-one (5a). IR (film) n = 3430, 2902, 1715, 1040
cm–1. 1H NMR (CDCl3) d = 0.39 (1 H, d, J = 5.9 Hz), 0.87 (3
H, s), 0.90 (1 H, m), 1.00 (3 H, s), 1.01 (3 H, s), 0.90–1.30 (4
H, m), 2.13 (3 H, s), 2.13 (1 H, m), 2.79 (1 H, dd, J = 4.2,
J¢ = 18.8 Hz), 3.81 (1 H, t, J = 6.2 Hz) ppm. 13C NMR
(CDCl3) d = 16.29 (CH), 19.69 (CH3), 26.83 (C), 27.01
(CH2), 27.93 (C), 28.38 (CH3), 29.48 (CH3), 31.38 (CH3),
33.39 (CH2), 39.54 (CH), 42.91 (CH2), 71.96 (CH-O),
210.06 (C=O) ppm. MS (EI): m/z (%) = 210 (19) [M+], 177
(9), 153 (53), 97 (100), 71 (95). HRMS (IE): m/z calcd for
C13H22O2 [M+]: 210.1619. Found: 210.1620.
7-Hydroxy-1,4,4,7a-tetramethyloctahydroinden-2-one
(7c). IR (film) n = 3453, 2955, 1732, 1051 cm–1. 1H NMR
(CDCl3) d = 0.81 (3 H, s), 0.90 (3 H, s), 0.94 (3 H, s), 1.09
(3 H, d, J = 6.9 Hz), 1.20–1.70 (4 H, m), 1.52 (1 H, dd,
J = 7.7 Hz, J¢ = 14 Hz), 2.05 (2 H, m), 2.18 (1 H, dd, J = 7.7
Hz, J¢ = 18 Hz), 3.60 (1 H, dd, J = 5.2 Hz, J¢ = 10.3 Hz)
(9) (a) The epoxyalkenes 1–4 were obtained by a Wittig reaction
of the aldehydes I (n = 0, 1, 2, 3) followed by selective
epoxidation with mCPBA in CH2Cl2 at –30 °C. The starting
Synlett 2004, No. 14, 2553–2557 © Thieme Stuttgart · New York