7840
H. Shimizu et al. / Tetrahedron Letters 45 (2004) 7837–7841
100000
10000
1000
100
try Research Department I, Chugai Pharmaceutical Co.,
In vivo Ca 48h
Ltd., and Dr. Fusao Makishima, Director, Pharmaceu-
tical Research Department II, Chugai Pharmaceutical
Co., Ltd., for their encouragement. Dr. Paul Langman,
Regulatory Affairs Department, Chugai Pharmaceutical
Co., Ltd., is also thanked for taking time to review this
manuscript.
In vitro HL-60 differentiation
inducing activity
#
#
#
10
References and notes
1
1. (a) Lythgoe, B. Chem. Soc. Rev. 1980, 9, 449; (b) Ikekawa,
N.; Fujimoto, Y. J. Syn. Org. Chem. Jpn. 1988, 46, 455; (c)
Bouillon, R.; Okamura, W. H.; Norman, A. W. Endocr.
Rev. 1995, 16, 200; (d) Zhu, G.-D.; Okamura, W. H.
Chem. Rev. 1995, 95, 1877; (e) Jankowski, P.; Marczak, S.;
Wicha, J. Tetrahedron 1998, 54, 12071; (f) Posner, G. H.;
Kahraman, M. Eur. J. Org. Chem. 2003, 3889.
0.1
2. Abe, E.; Miyaura, C.; Sakagami, H.; Takeda, M.; Konno,
K.; Yamazaki, T.; Yoshiki, S.; Suda, T. Proc. Natl. Acad.
Sci. U.S.A. 1981, 78, 4990.
3. (a) Murayama, E.; Miyamoto, K.; Kubodera, N.; Mori,
T.; Matsunaga, I. Chem. Pharm. Bull. 1986, 34, 4410; (b)
Kubodera, N.; Watanabe, H.; Kawanishi, T.; Matsumoto,
M. Chem. Pharm. Bull. 1992, 40, 1494; (c) Mikami, T.;
Iwaoka, T.; Kato, M.; Watanabe, H.; Kubodera, N.
Synth. Commun. 1997, 27, 2363.
Figure 2. Relative diagram between in vivo calcemic and differentia-
tion-inducing (HL-60) activities. HL-60 differentiation-inducing activ-
ity relative potency (%) = (Calcitriol EC50/analogue EC50) · 100.
In vivo calcemic activity (48h) relative potency (%) = ({analogueÕs
[Ca mmol/L] À VehicleÕs [Ca mmol/L]}/{CalcitriolÕs [Ca mmol/L] À
VehicleÕs [Ca mmol/L]}) · 100. #p < 0.05 compared to vehicle by
unpaired StudentÕs t-test.
4. Kubodera, N. J. Syn. Org. Chem. Jpn. 1996, 54, 139.
5. Morimoto, S.; Imanaka, S.; Koh, E.; Shiraishi, T.;
Nabata, T.; Kitano, S.; Miyashita, Y.; Nishii, Y.; Ogihara,
T. Biochemistry 1989, 19, 1143.
6. (a) Kubodera, N.; Miyamoto, K.; Ochi, K.; Matsunaga, I.
Chem. Pharm. Bull. 1986, 34, 2286; (b) Kubodera, N.;
Miyamoto, K.; Matsumoto, M.; Kawanishi, T.; Ohkawa,
H.; Mori, T. Chem. Pharm. Bull. 1992, 40, 648.
7. Brown, A. J.; Ritter, C. R.; Finch, J. L.; Morrissey, J.;
Martin, K. J.; Murayama, E.; Nishii, Y.; Slatopolsky, E.
J. Clin. Invest. 1989, 84, 728.
8. (a) Binderup, L.; Latini, S.; Binderup, E.; Bretting, C.;
Calverley, M.; Hansen, K. Biochem. Pharmacol. 1991, 42,
1569; (b) Niels, R. A.; Frants, A. B.; Gunnar, G. S.
BioMed. Chem. Lett. 1992, 2, 1713.
9. Kragballe, K.; Dam, T. N.; Hansen, E. R.; Baadsgaard,
O.; Larsen, F. G.; Sondergaard, J.; Axelsen, M. B. Acta
Derm. Venereol. 1994, 74, 398.
10. Cf. (a) Shimizu, H.; Shimizu, K.; Kubodera, N.; Yaku-
shijin, K.; Horne, D. A. Tetrahedron Lett. 2004, 45, 1347;
(b) Shimizu, H.; Shimizu, K.; Kubodera, N.; Yakushijin,
K.; Horne, D. A. Heterocycles 2004, 63, 1335.
than Calcitriol 1 indicating that the 21-methyl function-
ality, irrespective of its stereochemistry, plays an impor-
tant role in the exhibition of calcemic activity. The
differentiation-inducing activity, on the other hand,
was diminished in the demethyl compounds 5 and 6,
but still remained overwhelmingly in both Calcitriol 1
and Maxacalcitol 2, indicating the possibility of other
factors on side-chain moiety than the 21-methyl func-
tionality in the exhibition of differentiation-inducing
activity.
The present study has clearly demonstrated the crucial
role of the 21-methyl functionality on the exhibition of
calcemic activity irrespective of its stereochemistry. At
the same time, the present study suggested the impor-
tance of length and bulkiness of the side chain moiety
in the 21-nor-derivatives on the exhibition of differenti-
ation-inducing activity.
In conclusion, we have confirmed two structural factors
on the side chain of the 22-oxa-1a,25-dihydroxyvitamin
D3 system essential for the control of calcemic activity
and differentiation-inducing activity. Further work
along the side-chain modification of 21-nor-22-oxa-
1a,25-dihydroxyvitamin D3 derivatives as well as other
21-nor-1a,25-dihydroxyvitamin D3 derivatives on the
basis of the present study is currently in progress.
11. Kubodera, N.; Miyamoto, K.; Watanabe, H.; Kato, M.;
Sasahara, K.; Ochi, K. J. Org. Chem. 1992, 57, 5019.
12. Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.;
Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392.
13. NMR spectra (270MHz for 1H and 67.8MHz for 13C
spectra, respectively) of the representative compounds: 5:
1H NMR: d 6.37 (d, J = 11.2Hz, 1H), 6.00 (d, J = 11.2Hz,
1H), 5.33 (s, 1H), 4.99 (s, 1H), 4.44 (m, 1H), 4.24 (m, 1H),
3.46–3.68 (m, 5H), 3.28–3.34 (m, 1H), 2.81–2.86 (m, 1H),
2.58–2.63 (m, 1H), 2.28–2.35 (m, 1H), 1.50–2.05 (m, 13H),
1.24–1.35 (m, 9H), 0.51 (s, 3H). 13C NMR: d 147.6, 142.6,
133.1, 124.9, 117.2, 111.8, 73.3, 70.9, 70.6, 68.8, 66.8, 55.8,
50.4, 45.3, 45.0, 42.9, 41.3, 39.1, 29.5, 29.1, 25.2, 23.3, 22.6,
12.6. Compound 6: 1H NMR: d 6.38 (d, J = 11.2Hz, 1H),
6.01 (d, J = 11.2Hz, 1H), 5.33 (s, 1H), 5.00 (s, 1H), 4.44
(m, 1H), 4.23 (m, 1H), 3.28–3.50 (m, 5H), 2.83–2.87 (m,
1H), 2.57–2.63 (m, 1H), 2.28–2.35 (dd, J = 13.4, 6.6Hz,
1H), 1.26–2.13 (m, 23H), 0.83–0.88 (m, 6H), 0.50 (s, 3H).
13C NMR: d 147.6, 142.8, 133.0, 124.9, 117.1, 111.8, 73.9,
Acknowledgements
We thank Dr. Kunio Ogasawara, Professor Emeritus,
Tohoku University, for his helpful suggestions. We also
thank Dr. Yutaka Miura, Group Manager, Synthetic
Technology Research Department, Chugai Pharmaceu-
tical Co., Ltd., Mr. Toshiro Kozono, Director, Chemis-