2809
O. K. Rasheed et al.
Cluster
Synlett
Acknowledgment
Raftery, J.; Little, M. S.; McDouall, J. J. W.; Yeates, S. G.; Quayle, P.
Chem. Commun. 2015, 51, 6115. ATRP reactions of azo-contain-
ing substrates is documented: (f) Fang, L.; Chen, S.; Guo, X.;
Zhang, Y.; Zhang, H. Langmuir 2012, 28, 9767.
Financial support from the University of Manchester is gratefully ac-
knowledged. The UoM thanks the EPSRC (grant number
EP/K039547/1) for the provision of Bruker NMR spectrometers and an
Agilent SuperNova X-ray diffractometer.
(9) (a) Majumdar, K. C.; Nandi, R. K. Tetrahedron 2013, 69, 6921.
(b) Ichikawa, H.; Maruoka, K. Aliphatic and Aromatic Claisen
Rearrangement, In The Claisen Rearrangement; Hiesermann, M.;
Nubbermeyer, U., Eds.; Wiley-VCH: Weinheim, 2007, Chap. 3,
45.
Supporting Information
(10) (a) Florea, S.; Rudolf, W. D.; Chivu, M. Anal. Univ. Craiova, Ser.
Chim. 2005, 34, 1; Chem. Abstr. 2005, 146, 379752. For alterna-
tive approaches to related substrates, see: (b) Odabaşoğlu, M.;
Turgut, G.; Karadayi, N.; Büyükgüngör, O. Dyes and Pigments
2005, 64, 271.
Supporting information for this article is available online at
for all new compounds are included, as well as a cif file for compound
11a (CCDC 1048487).
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
(11) Bender, D. R.; Kanne, D.; Frazier, J. D.; Rapoport, H. J. Org. Chem.
1983, 48, 2709.
(12) Giger, R.; Allain, R.; Rey, M.; Dreiding, A. S. Helv. Chim. Acta
1970, 53, 120.
(13) For a related ipso-substitution reaction during a Claisen rear-
rangement, see: Anjaneyulu, A. S. R.; Isaa, B. M. J. Chem. Soc.,
Perkin Trans. 1 1990, 993.
(14) Hegele, P.; Santhamma, B.; Schnakenburg, G.; Fröhlich, R.;
Kateava, O.; Nieger, M.; Kotsis, K.; Neese, F.; Dötz, K. H. Organo-
metallics 2010, 29, 672.
References and Notes
(1) For applications of related compounds, see: Quandt, G.; Höner,
G.; Pabel, J.; Dine, J.; Eder, M.; Wanner, K. T. J. Med. Chem. 2014,
57, 6809.
(2) (a) Griess, P. Justus Liebigs Ann. Chem. 1866, 137, 39.
(b) Maerino, E. Chem. Soc. Rev. 2011, 40, 3835. (c) Zollinger, H.
Azo Coupling Reactions, In Diazo Chemistry I; VCH: Weinheim,
1994, 305.
(15) General Method for the Preparation of Allylated Ethers 8
To a stirred mixture of powdered KOH (5 equiv) in DMSO was
added the diazo compound (1 equiv). Allyl bromide (2 equiv)
was then added to the mixture. The reaction mixture was
stirred for 3 h at r.t. and then poured into H2O. The organic
material was extracted into CH2Cl2 (50 mL), and the organic
layer was washed with brine (2 × 20 mL), H2O (1 × 20 mL), dried
(MgSO4), and concentrated in vacuo. The crude product was
purified by flash chromatography to give products 8a–i
Synthesis of (E)-1-[2-(Allyloxy)phenyl]-2-phenyldiazene (8a)
Yield 94%; mp 70–72 °C. 1H NMR (300 MHz, CDCl3): δ = 4.64 (2
H, dt, J = 5, 1 Hz), 5.34 (1 H, dq, J = 10, 1 Hz), 5.47 (1 H, dq, J = 17,
2 Hz), 5.95–6.23 (1 H, m) 6.97–7.14 (2 H, m), 7.40–7.58 (3 H, m),
7.81–8.01 (4 H, m) ppm. 13C NMR (75 MHz, CDCl3): δ = 69.1,
114.9, 118.1, 122.5, 124.6, 128.9, 130.3, 132.7, 147.1, 152.7,
161.1 ppm. MS (ES+): m/z = 239 [M + Na]+. HRMS (ES+): m/z
calcd for [C15H14N2O + H]: 239.1179; found: 239.1182. IR (ATR):
(3) (a) Gøgsig, T. M.; Kleimark, J.; Nilsson, L.; Korsager, S.;
Lindhardt, A. T.; Norrby, P.-O.; Skrydstrup, T. J. Am. Chem. Soc.
2012, 134, 443. (b) Casa-Solvas, J. M.; Vargas-Berenguel, A. Tet-
rahedron Lett. 2008, 49, 6778. (c) Ma, X.; Wang, Q.; Tian, H. Tet-
rahedron Lett. 2007, 48, 7112. (d) Harvey, J. H.; Butler, B. K.;
Trauner, D. Tetrahedron Lett. 2007, 48, 1661. (e) Okanao, K.;
Tsutsumi, O.; Shishido, A.; Ikeda, T. J. Am. Chem. Soc. 2006, 128,
15368. (f) Liao, L.-X.; Stellacci, F.; McGrath, D. V. J. Am. Chem.
Soc. 2004, 126, 2181. For
a representative example, see:
(g) Strueben, J.; Gates, P. J.; Staubitz, A. J. Org. Chem. 2014, 79,
1719. (h) Pérez-Miqueto, J.; Telleria, A.; Muñoz-Olasagasti, M.;
Altube, A.; Garcia-Lecina, E.; de Cózar, A.; Freixa, Z. Dalton Trans.
2015, 2075.
(4) (a) Heck, R. F. J. Am. Chem. Soc. 1968, 90, 313. (b) Cope, A. C. J.
Am. Chem. Soc. 1965, 87, 3272. (c) Kleiman, J. P.; Dubeck, M. J.
Am. Chem. Soc. 1963, 85, 1544. (d) Bagga, M. M.; Flannigan, W.
T.; Knox, G. R.; Pauson, P. L. J. Chem. Soc. C 1969, 1534.
ν
max = 1496, 1579, 1598, 3023 cm–1
.
(5) (a) Majhi, B.; Kundu, D.; Ahammaed, S.; Ranu, B. C. Chem. Eur. J.
2014, 20, 9862. (b) Qian, C.; Lin, D.; Deng, Y.; Zhang, X-Q.; Jiang,
H.; Miao, G.; Tang, X.; Zeng, Y. Org. Biomol. Chem. 2014, 12,
5866. (c) Lian, Y.; Bergman, R. G.; Lavis, L. D.; Ellman, J. A. J. Am.
Chem. Soc. 2013, 135, 7122; and references cited therein.
(6) (a) Koźlecki, T.; Syper, L.; Wilk, K. A. Synthesis 1997, 681.
(b) Kano, N.; Komatsu, F.; Yamamura, M.; Kawashima, T. J. Am.
Chem. Soc. 2006, 128, 7097. The direct lithiation of azobenzene
derivatives has recently been reported, see: (c) Nguyen, T. T. T.;
Boussonnière, A.; Banaszak, E.; Castanet, A.-S.; Nguyen, K. P. P.;
Mortier, J. J. Org. Chem. 2014, 79, 2775.
(16) General Procedure for the Preparation of o-Claisen-Rear-
ranged Phenols 9
To a stirred solution of the allyl ether (1 mmol) in dry CH2Cl2
(10 mL) was added Et2AlCl (2 equiv) at 0 °C under an atmo-
sphere of dry nitrogen. The reaction mixture was stirred at r.t.
for 15 h and then quenched by the careful addition of a sat.
solution of Na/K tartrate tetrahydrate (10 mL). The organic layer
was separated and the aqueous phase extracted with EtOAc
(2 × 20 mL). The combined organic extracts were washed (brine,
3 × 20 mL), then H2O (3 × 20 mL), and dried over MgSO4. The
crude mixture was purified by column chromatography (40%
CH2Cl2 in hexane) to give the products 9a–h.
(7) (a) Colonna, M.; Risalti, A. Gazz. Chim. Ital. 1956, 86, 698.
(b) Risaliti, A.; Bozzini, S. Ann. Chim. 1964, 54, 685. (c) Holm, T.
Acta Chem. Scand. B 1983, 37, 567.
(E)-2-Allyl-4-(phenyldiazenyl)phenol (9a)
Yield 83%; crystalline; mp 91.7–93.0 °C (lit. 89–90 °C) was
obtained by column chromatography (40% CH2Cl2 in hexane). 1H
NMR (300 MHz, CDCl3): δ = 3.52 (2 H, d, J = 6 Hz), 5.21 (1 H, t, J =
1 Hz), 5.26 (1 H, dd, J = 8, 1 Hz), 6.09 (1 H, ddt, J =16, 10, 6 Hz),
6.94 (1 H, dd, J = 9, 3 Hz, CH, ArH), 7.44–7.56 (3 H, m, CH, ArH),
7.76–7.82 (2 H, m, CH, ArH), 7.89 (2 H, dd, J = 8, 2 Hz, CH, ArH)
ppm. 13C NMR (75 MHz, CDCl3): δ = 35.1, 116.2, 117.1, 122.5,
123.5, 125.1, 129.1, 130.3, 135.7, 126.1, 147.1, 152.7, 156.9
(8) (a) Bull, J. A.; Hutchings, M. G.; Quayle, P. Angew. Chem. Int. Ed.
2007, 46, 1869. (b) Bull, J. A.; Hutchings, M. G.; Lujan, C.; Quayle,
P. Tetrahedron Lett. 2008, 49, 1352. (c) Bull, J. A.; Hutchings, M.
G.; Lujan, C.; Quayle, P. Tetrahedron Lett. 2009, 50, 3617.
(d) Little, M.; Lan, H.; Raftery, J.; Morrison, J. J.; McDouall, J. J.
W.; Yeates, S. G.; Quayle, P. Eur. J. Org. Chem. 2013, 6038.
(e) Heard, K. W. J.; Morrison, J. J.; Weston, L.; Lo, C. H.; Pirvu, L.;
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2806–2810