3214 J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 20
Doucet-Personeni et al.
(23) Pang, Y. P.; Kozikowski, A. P. Prediction of the binding site of
1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine in
acetylcholinesterase by docking studies with the SYSDOC
program. J . Comput.-Aided Mol. Des. 1994, 8, 683-693.
(24) Pang, Y. P.; Kozikowski, A. P. Prediction of the binding sites of
huperzine A in acetylcholinesterase by docking studies. J .
Comput.-Aided Mol. Des. 1994, 8, 669-681.
Ack n ow led gm en t. This work was supported by the
European Union’s 4th Framework Program in Biotech-
nology.
Refer en ces
(25) Cho, S. J .; Garsia, M. L.; Bier, J .; Tropsha, A. Structure-based
alignment and comparative molecular field analysis of acetyl-
cholinesterase inhibitors. J . Med. Chem. 1996, 39, 5064-5071.
(26) Kawakami, Y.; Inoue, A.; Kawai, T.; Wakita, M.; Sugimoto, H.;
et al. The rationale for E2020 as a potent acetylcholinesterase
inhibitor. Bioorg. Med. Chem. 1996, 4, 1429-1446.
(27) Camps, P.; Cusack, B.; Mallender, W. D.; El Achab, R. E.; Morral,
J .; et al. Huprine X is a novel high-affinity inhibitor of acetyl-
cholinesterase that is of interest for treatment of Alzheimer’s
disease. Mol. Pharmacol. 2000, 57, 409-417.
(28) Han, Y. F.; Li, C. P.; Chow, E.; Wang, H.; Pang, Y. P.; et al.
Dual-site binding of bivalent 4-aminopyridine- and 4-amino-
quinoline-based AChE inhibitors: contribution of the hydropho-
bic alkylene tether to monomer and dimer affinities. Bioorg. Med.
Chem. 1999, 7, 2569-2575.
(29) Camps, P.; El Achab, R.; Gorbig, D. M.; Morral, J .; Munoz-
Torrero, D.; et al. Synthesis, in vitro pharmacology, and molec-
ular modeling of very potent tacrine-huperzine A hybrids as
acetylcholinesterase inhibitors of potential interest for the
treatment of Alzheimer’s disease. J . Med. Chem. 1999, 42, 3227-
3242.
(30) Kryger, G.; Silman, I.; Sussman, J . L. Three-dimensional
structure of a complex of E2020 with acetylcholinesterase from
Torpedo californica. J . Physiol. Paris 1998, 92, 191-194.
(31) Harel, M.; Silman, I.; Sussman, J . L. Private commmunications,
later published as ref 11, 1997.
(32) Street, I. P.; Lin, H. K.; Laliberte, F.; Ghomashchi, F.; Wang,
Z.; et al. Slow- and tight-binding inhibitors of the 85-kDa human
phospholipase A2. Biochemistry 1993, 32, 5935-5940.
(33) Imperiali, B.; Abeles, R. H. Inhibition of serine proteases by
peptidyl fluoromethyl ketones. Biochemistry 1986, 25, 3760-
3767.
(34) Veale, C. A.; Bernstein, P. R.; Bohnert, C. M.; Brown, F. J .;
Bryant, C.; et al. Orally active trifluoromethyl ketone inhibitors
of human leukocyte elastase. J . Med. Chem. 1997, 40, 3173-
3181.
(35) Neises, B.; Broersma, R. J .; Tarnus, C.; Piriou, F.; Remy, J . M.;
et al. Synthesis and comparison of tripeptidylfluoroalkane
thrombin inhibitors. Bioorg. Med. Chem. 1995, 3, 1049-1061.
(36) Szekacs, A.; Halarnkar, P. P.; Olmstead, M. M.; Prag, K. A.;
Hammock, B. D. Heterocyclic derivatives of 3-substituted-1,1,1-
trifluoro-2-propanones as inhibitors of esterolytic enzymes.
Chem. Res. Toxicol. 1990, 3, 325-332.
(37) Nair, H. K.; Lee, K.; Quinn, D. M. m-(N,N,N-Trimethylammo-
nio)trifluoroacetophenone: A femtomolar inhibitor of acetylcho-
linesterase. J . Am. Chem. Soc. 1993, 115, 9939-9941.
(38) Gregor, V. E.; Emmerling, M. R.; Lee, C.; Moore, C. J . The
synthesis and in vitro acetylcholinesterase and butyrylcholin-
esterase inhibitory activity of Tacrine (COGNEX®) derivatives.
Bioorg. Med. Chem. Lett. 1992, 2, 861-864.
(39) Desai, M. C.; Thadeio, P. F.; Lipinski, C. A.; Liston, D. R.;
Spencer, R. W.; et al. Physical parameters for brain uptake:
optimising LOG P, LOG D and pKa of THA. Bioorg. Med. Chem.
Lett. 1991, 1, 411-414.
(40) Gelb, M. H.; Svaren, J . P.; Abeles, R. H. Fluoro ketone inhibitors
of hydrolytic enzymes. Biochemistry 1985, 24, 1813-1817.
(41) Godard, A.; Queguiner, G. o-Aminoformylquinolines, New Het-
erocyclic Synthons. J . Heterocycl. Chem. 1980, 17, 465-473.
(42) Krishnamurti, R.; Bellew, D. R.; Prakash, G. K. S. Preparation
of Trifluoromethyl and Other Perfluoroalkyl Compounds with
(Perfluoroalkyl)trimethylsilanes. J . Org. Chem. 1991, 56, 984-
989.
(43) Camps, P.; El Achab, R.; Morral, J .; Munoz-Torrero, D.; Badia,
A.; et al. New Tacrine-Huperzine A Hybrids (Huprines): Highly
Potent Tight-Binding Acetylcholinesterase Inhibitors of Interest
for the Treatment of Alzheimer’s Disease. J . Med. Chem. 2000,
43, 4657-4666.
(1) Enz, A.; Amstutz, R.; Boddeke, H.; Gmelin, G.; Malanowski, J .
Brain selective inhibition of acetylcholinesterase: a novel ap-
proach to therapy for Alzheimer’s disease. Prog. Brain Res. 1993,
98, 431-438.
(2) Millard, C. B.; Broomfield, C. A. Anticholinesterases: medical
applications of neurochemical principles. J . Neurochem. 1995,
64, 1909-1918.
(3) Weinstock, M. Possible role of the cholinergic system and disease
models. J . Neural Transm., Suppl. 1997, 49, 93-102.
(4) Lindner, A.; Schalke, B.; Toyka, K. V. Outcome in juvenile-onset
myasthenia gravis: a retrospective study with long-term follow-
up of 79 patients. J . Neurol. 1997, 244, 515-520.
(5) Aldridge, W. N. Some Properties of Specific Cholinesterase with
Particular Reference to the Mechanism of Inhibition by Diethyl
p-Nitrophenyl Thiophosphate (E605) and Analogues. Biochem.
J . 1950, 46, 451-460.
(6) Davis, K. L.; Powchik, P. Tacrine. Lancet 1995, 345, 625-630.
(7) Ballantyne, B.; Marrs, T. C. Clinical and experimental toxicology
of organophosphates and carbamates; Butterworth-Heine-
mann: Oxford.
(8) Sugimoto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu, K. Synthesis
and structure-activity relationships of acetylcholinesterase
inhibitors: 1-benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]-
piperidine hydrochloride and related compounds. J . Med. Chem.
1995, 38, 4821-4829.
(9) Sussman, J . L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.;
et al. Atomic structure of acetylcholinesterase from Torpedo
californica: a prototypic acetylcholine-binding protein. Science
1991, 253, 872-879.
(10) Harel, M.; Quinn, D. M.; Nair, H. K.; Silman, I.; Sussman, J . L.
The X-Ray Structure of a Transition State Analog Complex
Reveals the Molecular Origins of the Catalytic Power and
Substrate Specificity of Acetylcholinesterase. J . Am. Chem. Soc.
1996, 118, 2340.
(11) Harel, M.; Schalk, I.; Ehret-Sabatier, L.; Bouet, F.; Goeldner,
M.; et al. Quaternary ligand binding to aromatic residues in the
active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci.
U.S.A. 1993, 90, 9031-9035.
(12) Millard, C. B.; Kryger, G.; Ordentlich, A.; Greenblatt, H. M.;
Harel, M.; et al. Crystal structures of aged phosphonylated
acetylcholinesterase: nerve agent reaction products at the
atomic level. Biochemistry 1999, 38, 7032-7039.
(13) Greenblatt, H. M.; Kryger, G.; Lewis, T.; Silman, I.; Sussman,
J . L. Structure of acetylcholinesterase complexed with (-)-
galanthamine at 2.3 A resolution. FEBS Lett. 1999, 463, 321-
326.
(14) Kryger, G.; Silman, I.; Sussman, J . L. Structure of acetylcho-
linesterase complexed with E2020 (Aricept): implications for the
design of new anti-Alzheimer drugs. Struct. Fold. Des. 1999, 7,
297-307.
(15) Harel, M.; Kleywegt, G. J .; Ravelli, R. B.; Silman, I.; Sussman,
J . L. Crystal structure of an acetylcholinesterase-fasciculin
complex: interaction of a three-fingered toxin from snake venom
with its target. Structure 1995, 3, 1355-1366.
(16) Bourne, Y.; Taylor, P.; Marchot, P. Acetylcholinesterase inhibi-
tion by fasciculin: crystal structure of the complex. Cell 1995,
83, 503-512.
(17) Bourne, Y.; Taylor, P.; Bougis, P. E.; Marchot, P. Crystal
structure of mouse acetylcholinesterase. A peripheral site-
occluding loop in a tetrameric assembly. J . Biol. Chem. 1999,
274, 2963-2970.
(18) Raves, M. L.; Harel, M.; Pang, Y. P.; Silman, I.; Kozikowski, A.
P.; et al. Structure of acetylcholinesterase complexed with the
nootropic alkaloid, (-)-huperzine A. Nat. Struct. Biol. 1997, 4,
57-63.
(19) Gilson, M. K.; Straatsma, T. P.; McCammon, J . A.; Ripoll, D.
R.; Faerman, C. H.; et al. Open “back door” in a molecular
dynamics simulation of acetylcholinesterase. Science 1994, 263,
1276-1278.
(20) Axelsen, P. H.; Harel, M.; Silman, I.; Sussman, J . L. Structure
and dynamics of the active site gorge of acetylcholinesterase:
synergistic use of molecular dynamics simulation and X-ray
crystallography. Protein Sci. 1994, 3, 188-197.
(44) Badia, A.; Banos, J . E.; Camps, P.; Contreras, J .; Gorbig, D. M.;
et al. Synthesis and evaluation of tacrine-huperzine A hybrids
as acetylcholinesterase inhibitors of potential interest for the
treatment of Alzheimer’s disease. Bioorg. Med. Chem. 1998, 6,
427-440.
(45) Barril, X.; Orozco, M.; Luque, F. J . Predicting Relative Binding
Free Energies of Tacrine-Huperzine A Hybrids as Inhibitors of
Acetylcholinesterase. J . Med. Chem. 1999, 42, 5110-5119.
(46) Sussman, J . L.; Harel, M.; Frolow, F.; Varon, L.; Toker, L.; et
al. Purification and crystallization of a dimeric form of acetyl-
cholinesterase from Torpedo californica subsequent to solubili-
zation with phosphatidylinositol-specific phospholipase C. J . Mol.
Biol. 1988, 203, 821-823.
(21) Ordentlich, A.; Barak, D.; Kronman, C.; Ariel, N.; Segall, Y.; et
al. Contribution of aromatic moieties of tyrosine 133 and of the
anionic subsite tryptophan 86 to catalytic efficiency and allosteric
modulation of acetylcholinesterase. J . Biol. Chem. 1995, 270,
2082-2091.
(22) Felder, C. E.; Botti, S. A.; Lifson, S.; Silman, I.; Sussman, J . L.
External and internal electrostatic potentials of cholinesterase
models. J . Mol. Graph. Model 1997, 15, 318-327, 335-317.