9738
J. Am. Chem. Soc. 2001, 123, 9738-9742
Enantioconvergent Synthesis by Sequential Asymmetric
Horner-Wadsworth-Emmons and Palladium-Catalyzed Allylic
Substitution Reactions
Torben M. Pedersen,|,§,† E. Louise Hansen,|, John Kane,§ Tobias Rein,*,|,‡ Paul Helquist,*,§
Per-Ola Norrby,*,| and David Tanner|
Contribution from the Department of Chemistry, Technical UniVersity of Denmark, Building 201,
KemitorVet, DK-2800 Kgs. Lyngby, Denmark, and Department of Chemistry and Biochemistry,
251 Nieuwland Science Hall, UniVersity of Notre Dame, Notre Dame, Indiana 46556
ReceiVed NoVember 20, 2000. ReVised Manuscript ReceiVed June 5, 2001
Abstract: A new method for enantioconvergent synthesis has been developed. The strategy relies on the
combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic
substitution. Different R-oxygen-substituted, racemic aldehydes were initially transformed by asymmetric HWE
reactions into mixtures of two major R,â-unsaturated esters, possessing opposite configurations at their allylic
stereocenters as well as opposite alkene geometry. Subsequently, these isomeric mixtures of alkenes could be
subjected to palladium-catalyzed allylic substitution reactions with carbon, nitrogen, and oxygen nucleophiles.
In this latter step, the respective (E) and (Z) alkene substrate isomers were observed to react with opposite
stereospecificity: the (E) alkene reacted with retention and the (Z) alkene with inversion of stereochemistry
with respect to both the allylic stereocenter and the alkene geometry. Thus, a single γ-substituted ester was
obtained as the overall product, in high isomeric purity. The method was applied to a synthesis of a subunit
of the iejimalides, a group of cytotoxic macrolides.
Introduction
methods reported for dynamic resolution rely on a rapid
interconversion of the substrate enantiomers via a reversible
proton transfer2d or an oxidation/reduction sequence.2e The
concept of parallel kinetic resolution, which recently was
introduced by Vedejs,3a is based on the simultaneous use of
two different reagents which react with opposite enantiomer
preference. Applications to different reaction types are emerging.
In a deracemization/stereoinversion sequence, on the other hand,
a kinetic resolution is followed by an inversion of configuration
of either the product or the unreacted starting enantiomer from
the first step. Another alternative strategy is to use an enantio-
convergent reaction sequence (i.e., conversion of both enanti-
omers of a racemate to the same chiral end product via isomeric
synthetic intermediates).4,5 Since the first report of the concept
by Fischli and co-workers,5a several methods, based on different
reactions/reaction combinations, have been demonstrated. How-
Kinetic resolution1 of a racemic starting material is a widely
used strategy for obtaining chiral molecules in enantiomerically
enriched form. One drawback with standard kinetic resolutions
is the inherently inefficient material throughput, since a
maximum yield of 50% of the desired product can be obtained.
Modified strategies which permit more efficient use of the
starting material [e.g., dynamic resolution,2 parallel kinetic
resolution (PKR),3 and deracemization/stereoinversion4] have
been demonstrated for some substrate types. Many of the
| Technical University of Denmark.
§ University of Notre Dame.
† Present address: Department of Chemistry, Stanford University,
Stanford CA 94305.
Present address: ACADIA Pharmaceuticals, Fabriksparken 58, DK-
2600 Glostrup, Denmark.
‡ Present address: AstraZeneca R&D So¨derta¨lje, Discovery Chemistry,
S-15185 So¨derta¨lje, Sweden.
(5) Selected examples: (a) Fischli, A.; Klaus, M.; Mayer, H.; Scho¨n-
holzer, P.; Ru¨egg, R. HelV. Chim. Acta 1975, 58, 564. (b) Chan, K.-K.;
Cohen, N.; De Noble, J. P.; Specian, A. C., Jr.; Saucy, G. J. Org. Chem.
1976, 41, 3497. (c) Terashima, S.; Yamada, S.-I. Tetrahedron Lett. 1977,
1001. (d) Harada, T.; Shintani, T.; Oku, A. J. Am. Chem. Soc. 1995, 117,
12346 and references therein. (e) Fleming, I.; Winter, S. B. D. Tetrahedron
Lett. 1995, 36, 1733 and references therein. (f) Pedragosa-Moreau, S.;
Archelas, A.; Furstoss, R. Tetrahedron 1996, 52, 4593 and references
therein. (g) Bellucci, G.; Chiappe, C.; Cordoni, A. Tetrahedron: Asymmetry
1996, 7, 197. (h) Archer, I. V. J.; Leak, D. J.; Widdowson, D. A.
Tetrahedron Lett. 1996, 37, 8819. (i) Kroutil, W.; Mischitz, M.; Faber, K.
J. Chem. Soc., Perkin Trans. 1 1997, 3629. (j) Ducray, P.; Rousseau, B.;
Mioskowski, C. J. Org. Chem. 1999, 64, 3800. (k) Harada, T.; Nakamura,
T.; Kinugasa, M.; Oku, A. Tetrahedron Lett. 1999, 40, 503. (l) Taniguchi,
T.; Ogasawara, K. Tetrahedron Lett. 1999, 40, 4383. (m) Trost, B. M.;
Bunt, R. C.; Lemoine, R. C.; Calkins, T. L. J. Am. Chem. Soc. 2000, 122,
5968 and references therein. (n) Yoshida, N.; Ogasawara, K. Org. Lett.
2000, 2, 1461. See also: (o) DeMello, N. C.; Curran, D. P. J. Am. Chem.
Soc. 1998, 120, 329 and references therein. (p) Curran, D. P.; Lin, C.-H.;
DeMello, N. C.; Junggebauer, J. J. Am. Chem. Soc. 1998, 120, 342.
(1) Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249.
(2) Reviews: (a) Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem.
Soc. Jpn. 1995, 68, 36. (b) Ward, R. S. Tetrahedron: Asymmetry 1995, 6,
1475. (c) Caddick, S.; Jenkins, K. Chem. Soc. ReV. 1996, 25, 447. Selected
examples: (d) Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc.
1995, 117, 2931. (e) Larsson, A. L. E.; Persson, B. A.; Ba¨ckvall, J.-E.
Angew. Chem., Int. Ed. Engl. 1997, 36, 1211.
(3) (a) Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1997, 119, 2584. (b)
Cardona, F.; Valenza, S.; Goti, A.; Brandi, A. Eur. J. Org. Chem. 1999,
1319. (c) Pietrusiewicz, K. M.; Holody, W.; Koprowski, M.; Cicchi, S.;
Goti, A.; Brandi, A. Phosphorus, Sulfur, Silicon 1999, 144-146, 389. (d)
Pedersen, T. M.; Jensen, J. F.; Humble, R. E.; Rein, T.; Tanner, D.;
Bodmann, K.; Reiser, O. Org. Lett. 2000, 2, 535. (e) Eames, J. Angew.
Chem. Int. Ed. 2000, 39, 885. (f) Vedejs, E.; Rozners, E. J. Am. Chem.
Soc. 2001, 123, 2428.
(4) (a) Stecher, H.; Faber, K. Synthesis 1997, 1 and references therein.
(b) Strauss, U. T.; Felfer, U.; Faber, K. Tetrahedron: Asymmetry 1999,
10, 107 and references therein. Recent example: (c) Steinreber, A.;
Hellstro¨m, H.; Mayer, S. F.; Orru, R. V. A.; Faber, K. Synlett 2001, 111.
10.1021/ja005809q CCC: $20.00 © 2001 American Chemical Society
Published on Web 09/12/2001