a heteroatom are significantly less abundant. For example,
ring-closing metathesis of enol ethers is more difficult to
achieve than that of regular olefinic ethers.5 In addition,
successful metathesis cyclizations of olefins substituted with
a phosphorus atom (viz. vinylphosphonates and vinylphos-
phonamides) have recently been carried out.6 In contrast, to
the best of our knowledge, ring-closing metathesis of
enamines or enamides so far has not been reported in the
literature.7
In this paper, we wish to present the first examples of
ring-closing metathesis of olefinic enamides, to obtain the
corresponding cyclic enamides. These enamides are versatile
structural moieties, which are amenable to further function-
alization.8 Most of the enamide RCM precursors were
synthesized using the procedure of Breederveld, see Table
1.9 The yields of the precursors 10 and 14 (entries 1 and 5)
In addition to the unsubstituted and 1-substituted enamides
shown in Table 1, we prepared similar 2-substituted en-
amides. This proceeded via a reaction that was accidentally
encountered during the palladium-catalyzed N,O-acetal for-
mation of tosylamide 22.10 Reaction of tosylamide 22 with
phenyl propadienyl ether (21) in the presence of Pd(OAc)2
led to the initial formation of the N,O-acetal 23. This acetal
spontaneously isomerized during the aqueous workup, lead-
ing to the thermodynamically more stable enamide 24 in 41%
yield after column chromatography (Scheme 1).
Scheme 1. Synthesis of Enamide 24 via the
Palladium-Catalyzed N,O-Acetal Formation with Phenyl
Propadienyl Ethera
Table 1. Synthesis of the RCM Precursors
a Conditions: (a) Pd(OAc)2, dppp, Et3N, MeCN, room temper-
ature, 16 h; (b) aqueous workup.
entry imine
n
R
electrophile product (PG) yield (%)a
With these precursors in hand, we commenced the ring-
closing metathesis experiments (Table 2). We were very
pleased to find that the five-membered ring precursors
(entries 1-6) readily underwent ring closure at temperatures
between 20 and 40 °C using Grubbs catalyst 2 (the reaction
1
2
3
4
5
6
7
8
9
5
6
6
6
7
8
8
8
9
9
9
1
1
1
1
2
2
2
2
3
3
3
H
Ts2O
10 (Ts)
11 (Ts)
12 (Bz)
13 (CO2Et)
14 (Ts)
15 (Ts)
16 (Bz)
17 (CO2Et)
18 (Ts)
19 (Bz)
14
37
40
30
5
52
44
41
48
63
68
Me Ts2O
Me BzCl
Me (EtO2C)2O
H
Me Ts2O
Me BzCl
Me (EtO2C)2O
Me Ts2O
Me BzCl
Ts2O
1
was monitored by TLC and H NMR). Silica gel column
chromatography was used to remove the catalyst, yielding
the pure cyclic enamides 25-28 in isolated yields around
60% and higher.
10
11
With a methyl substituent on the 1-position of the
precursor (entry 2), the yield dropped slightly when the same
catalyst was used. Gratifyingly, the yield increased again to
86% by subjecting the tosyl-protected precursor 26 to the
more stable catalyst 3 at 84 °C (entry 3). Experiments with
a benzoyl or ethoxycarbonyl protecting group partly led to
degradation of starting materials and products at elevated
temperatures. Therefore, the yield of 27 could not be
Me (EtO2C)2O
20 (CO2Et)
a Isolated yield after column chromatography.
were low, probably due to the instability of both the starting
aldimines and the products. The yields of the other precursors
11-13 and 15-20 were comparable to the yields reported
in the literature for Breederveld conditions on similar
compounds.
(5) (a) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J.
Am. Chem. Soc. 2000, 122, 3783. (b) Postema, M. H. D.; Calimente, D.;
Liu, L.; Behrmann, T. L. J. Org. Chem. 2000, 65, 6061. (c) Clark, J. S.;
Kettle, J. G. Tetrahedron Lett. 1997, 38, 123, 127. (d) Sturino, C. F.; Wong,
J. C. Y. Tetrahedron Lett. 1998, 39, 9623. An efficient approach was
recently published: Rainier, J. D.; Cox, J. M.; Allwein, S. P. Tetrahedron
Lett. 2001, 42, 179.
(6) (a) Timmer, M. S. M.; Ovaa, H.; Filippov, D. V.; van der Marel, G.;
van Boom, J. H. Tetrahedron Lett. 2000, 41, 8635. (b) Hanson, P. R.;
Stoianova, D. S. Tetrahedron Lett. 1999, 40, 3297. (c) Stoianova, D. S.;
Hanson, P. R. Org. Lett. 2000, 2, 1769.
(3) For RCM examples to sulfur-containing heterocycles, see: (a) Shon,
Y.; Lee, T. R. Tetrahedron Lett. 1997, 38, 1283. (b) Armstrong, S. K.;
Christie, B. A. Tetrahedron Lett. 1996, 37, 9373. (c) Hanson, P. R.; Probst,
D. A.; Robinson, R. E.; Yau, M. Tetrahedron Lett. 1999, 40, 4761. (d)
Paquette, L. A.; Leit, S. M. J. Am. Chem. Soc. 1999, 121, 8126. (e) Long,
D. D.; Termin, A. P. Tetrahedron Lett. 2000, 41, 6743. (f) Dougherty, J.
M.; Hanson, P. R.; Klein, T. A.; Moore, J. D.; Probst, D. A. Robinson, R.
E.; Snelgrove, K. A. Tetrahedron 2000, 56, 9781. (h) Lane, C.; Snieckus,
V. Synlett 2000, 1294.
(4) For RCM examples to phosphorus-containing heterocycles, see: (a)
Hetherington, L.; Greedy, B.; Gouverneur, V. Tetrahedron 2000, 56, 2053.
(b) Leconte, M.; Jourdan, I.; Pagano, S.; Lefebvre, F.; Basset, J.-M. J. Chem.
Soc., Chem. Commun. 1995, 857. (c) Hanson, P. R.; Stoianova, D. S.
Tetrahedron Lett. 1998, 39, 3939. (d) Bujard, M.; Gouverneur, V.;
Mioskowski, C. J. Org. Chem. 1999, 64, 2119. (e) Trevitt, M.; Gouverneur,
V. Tetrahedron Lett. 1999, 40, 7333. (f) Schuman, M.; Trevitt, M.; Redd,
A.; Gouverneur, V. Angew. Chem., Int. Ed. 2000, 39, 2491. (g) Sørensen,
A. M.; Nielsen, P. Org. Lett. 2000, 2, 4217. (h) Osipov, S. N.; Artyushin,
O. I.; Kolomiets, A. F.; Bruneau, C.; Dixneuf, P. H. Synlett 2000, 1031. (i)
Sprott, K. T.; McReynolds, M. D.; Hanson, P. R. Synthesis 2001, 612.
(7) For an attempt, see: Agami, C.; Couty, R.; Rabasso, N. Tetrahedron
Lett. 2000, 41, 4113.
(8) (a) For N-acyliminium ion chemistry on enamides, see: Hiemstra,
H.; Speckamp, W. N. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, p 1047. (b) For a recent
example of an asymmetric Heck reaction on cyclic enamides, see: Tietze,
L. F.; Thede, K. Synlett 2000, 1470.
(9) (a) Breederveld, H. Recl. TraV. Chim. Pays-Bas 1960, 79, 401. (b)
Bach, T.; Schro¨der, J. J. Org. Chem. 1999, 64, 1205.
(10) Tjen, K. C. M. F.; Kinderman, S. S.; Schoemaker, H. E.; Hiemstra,
H.; Rutjes, F. P. J. T. Chem. Commun. 2000, 699.
2046
Org. Lett., Vol. 3, No. 13, 2001