J.C.Quada, Jr.et al./ Bioorg.Med.Chem.9 (2001) 2303–2314
2313
DNA 158 bp in length (derived from plasmid pBR322
by HindIII cleavage, dephosphorylation with alkaline
phosphatase, 32P labeling with T4 polynucleotide
kinase, EcoRV cleavage, and native PAGE isolation).32
Other conditions are described in the figure legends.
Solutions of Fe(NH4)2(SO4)2 were prepared immedi-
ately before use. Reactions were performed as described
above for the agarose gel bioassay. Then, 5 mL of load-
ing solution (10 M urea, 1.5 mM EDTA, 0.05% (w/v)
each of bromophenol blue and xylene cyanol) was
added and one-half of each reaction mixture was
applied to the gel. DNA sequencing reactions were per-
formed according to the method of Maxam and Gil-
bert.33 The denaturing 10% polyacrylamide gel (7.5 M
urea) contained 89 mM Tris–borate, pH 8.0, and 2mM
EDTA.28 Gels were run in the same buffer and analyzed
by autoradiography.
of Health Research Grants CA76297 and CA77284,
awarded by the National Cancer Institute.
References and Notes
1. (a) Umezawa, H. In Bleomycin: Current Status and New
Developments; Carter, S. K., Crooke, S. T., Umezawa, H.
Eds.; Academic: New York, 1978; pp 15–20. (b) Sikic, B. I.;
Rozencweig, M., Carter, S. K., Eds. Bleomycin Chemotherapy;
Academic: Orlando, FL, 1985.
2. (a) Hecht, S. M. Acc.Chem.Res. 1986, 19, 383. (b) Stubbe,
J.; Kozarich, J. W. Chem.Rev. 1987, 87, 1107. (c) Natrajan,
A.; Hecht, S. M. In Molecular Aspects of Anticancer Drug–
DNA Interactions; Neidle, S., Waring, M., Eds.; Macmillan:
London, 1993; pp 197–242. (d) Kane, S. A.; Hecht, S. M.
Prog.Nucleic Acid Res.Mol.Biol.
R. M. Chem.Rev. 1998, 98, 1153.
1994, 49, 313. (e) Burger,
3. (a) Magliozzo, R. S.; Peisach, J.; Ciriolo, M. R. Mol.
Pharmacol. 1989, 35, 428. (b) Carter, B. J.; de Vroom, E.;
Long, E. C.; van der Marel, G. A.; van Boom, J. H.; Hecht,
Photolysis of chlorobithiazole in 1-octene
A solution of 1.0 mg (2.5 mmol) of chlorobithiazole
methyl ester 8b in 3 mL of 1-octene was purged with
argon gas for 20 min. The solution was irradiated in a
Rayonet apparatus for 1 h at 30 ꢀC in a water bath with
a Pyrex filter. The reaction mixture was concentrated
under diminished pressure and the residue was pur-
ified by preparative silica gel TLC, development
with 2:1 hexanes–ethyl acetate, to afford two pro-
ducts. The faster moving product was found to be
1-bithiazolyl-2-chlorooctane 12, isolated as a color-
less glass: yield 0.5 mg (39%); 1H NMR (CDCl3) d
0.83 (t, 3H), 1.21 (s, 10H), 1.44 (s, 9H), 2.73 (dd, 1H,
J=15, 6 Hz), 3.02(dd, 1H, J=15, 10 Hz), 3.23 (t, 2H),
3.55–3.65 (m, 3H), 3.88 (s, 3H), 4.97 (br s, 1H) and 8.08
(s, 1H); mass spectrum m/z 581 and 516 (M+H)+, and
462and 460. The slower moving product was found to
be the regioisomer, 2-bithiazolyl-1-chlorooctane 11, also
isolated as a colorless glass: yield 0.4 mg (31%); 1H
NMR (CDCl3) d 0.86 (t, 3H), 1.25 (s, 10H), 1.45 (s, 9H),
2.48 (m, 1H), 2.78 (dd, 1H, J=12, 12 Hz), 3.12–3.25 (m,
3H), 3.57 (q, 2H), 3.92 (s, 3H), 4.97 (br s, 1H) and 8.08
(s, 1H); mass spectrum m/z 518 and 516 (M+H)+, and
462and 460.
S. M. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 9373. (c) Hut-
¨
tenhofer, A.; Hudson, S.; Noller, H. F.; Mascharak, P. K. J.
Biol.Chem. 1992, 267, 24471. (d) Holmes, C. E.; Carter, B. J.;
Hecht, S. M. Biochemistry 1993, 32, 4293. (e) Dix, D. J.; Lin,
P.-N.; McKenzie, A. R.; Walden, W. E.; Theil, E. C. J.Mol.
Biol. 1993, 231, 230. (f) Hecht, S. M. Bioconjugate Chem. 1994,
5, 513. (g) Hecht, S. M. In The Many Faces of RNA; Eggle-
ston, D. S., Prescott, C. D., Pearson, N. D., Eds.; Academic:
London, 1998, pp 3–17 (h) Hecht, S. M. J.Nat.Prod. 2000,
63, 158.
4. (a) Takeshita, M.; Kappen, L. S.; Grollman, A. P.; Eisen-
berg, M.; Goldberg, I. H. Biochemistry 1981, 20, 7599. (b)
Kross, J.; Henner, W. D.; Hecht, S. M.; Haseltine, W. A.
Biochemistry 1982, 21, 4310. (c) Shipley, J. B.; Hecht, S. M.
Chem.Res.Toxicol. 1988, 1, 2 5.
5. (a) Chien, M.; Grollman, A. P.; Horwitz, S. B. Biochemistry
1977, 16, 3641. (b) Lin, S. Y.; Grollman, A. P. Biochemistry
1981, 20, 7589. (c) Kross, J.; Henner, W. D.; Haseltine, W. A.;
Rodriguez, L.; Levin, M. D.; Hecht, S. M. Biochemistry
1982, 21, 3711. (d) Kilkuskie, R. E.; Suguna, H.; Yellin, B.;
Murugesan, N.; Hecht, S. M. J.Am.Chem.Soc.
1985, 107,
260. (e) Hamamichi, N.; Natrajan, A.; Hecht, S. M. J.Am.
Chem.Soc. 1992, 114, 6278.
6. (a) Sugiyama, H.; Kilkuskie, R. E.; Chang, L.-H.; Ma, L.-
T.; Hecht, S. M.; van der Marel, G. A.; van Boom, J. H. J.
Am.Chem.Soc. 1986, 108, 3852. (b) Carter, B. J.; Murty, V. S.;
Reddy, K. S.; Wang, S.-N. J.Biol.Chem. 1990, 265, 4193. (c)
Guajardo, R. J.; Hudson, S. E.; Brown, S. J.; Mascharak, P. K.
J.Am.Chem.Soc. 1993, 115, 7971.
Photolysis of bromobithiazole in 1-octene
A solution of 10 mg (23 mmol) of bromobithiazole
methyl ester 8d in 30 mL of 1-octene was treated and
worked up as described above for the photolysis of
chlorobithiazole 8d, to afford 1-bithiazolyl-2-bro-
mooctane 13 as a yellow oil: yield 4.5 mg (34%); 1H
NMR (CDCl3) d 0.88 (t, 3H), 1.29 (s, 10H), 1.45 (s,
9H), 3.12–3.20 (m, 2H), 3.55-3.6 (m, 3H), 3.95 (s,
3H), 5.09 (br s, 1H) and 8.15 (s, 1H); mass spectrum
m/z 562and 560 (M+H) +, 506 and 504, and 462
and 460.
7. (a) D’Andrea, A. D.; Haseltine, W. A. Proc.Natl.Acad.
Sci. U.S.A. 1978, 75, 3608. (b) Takeshita, M.; Grollman, A. P.;
Ohtsubo, E.; Ohtsubo, H. Proc. Natl. Acad. Sci. U.S.A. 1978,
75, 5983. (c) Mirabelli, C. K.; Ting, A.; Huang, C.-H.; Mong,
S.; Crooke, S. T. Cancer Res. 1982, 42, 2779.
8. (a) Youngquist, R. S.; Dervan, P. B. J.Am.Chem.Soc.
1985, 107, 5528. (b) Baker, B. F.; Dervan, P. B. J.Am.Chem.
Soc. 1985, 107, 8266.
9. (a) Epstein, J. H.; Brunsting, L. A.; Peterson, M. C.;
Schwarz, B. E. J.Invest.Dermatol. 1957, 28, 329. (b) Kirsch-
baum, B. A.; Beerman, H. Am.J.Med.Sci. 1964, 248, 445. (c)
Satanove, M.; McIntosh, J. S. J.Am.Med.Assoc. 1967, 200,
209.
10. (a) Decuyper, J.; Piette, J.; Lopez, M.; Merville, M.-P.;
van de Vorst, A. Biochem.Pharmacol. 1984, 33, 4025. (b)
Chignell, C. F.; Motten, A. G.; Buettner, G. R. Environ.
Health Perspect. 1985, 64, 103. (c) Motten, A. G.; Buettner,
G. R.; Chignell, C. F. Photochem.Photobiol. 1985, 42, 9.
Acknowledgements
This paper is dedicated to Professor Peter Dervan on
the occasion of his receipt of the 2000 Tetrahedron
Prize. This work was supported by National Institutes