2176
E. Pinard et al. / Bioorg. Med. Chem. Lett. 11 (2001) 2173–2176
From the SAR so far developed, racemic compound 20
showed overall the best in vitro profile. Biological
results obtained for the corresponding enantiomers S-
(+)-25 and R-(ꢀ)-26 are presented in Table 2. R-(ꢀ)-26
showed a slightly higher activity at the NMDA receptor
than S-(+)-25. In addition, bothenantiomers were
found to be equipotent at a1 adrenergic receptors. A
very high selectivity ratio of ꢂ1500-fold was achieved
with R-(ꢀ)-26.
3. Monyer, H.; Sprengel, R.; Schoepfer, R.; Herb, A.; Higu-
chi, M.; Lomeli, H.; Burnahev, N.; Sakmann, B.; Seeburg,
P. H. Science 1992, 256, 1217.
4. Moriyoshi, K. M.; Masu, M.; Ishii, T.; Shigemoto, R.;
Mizuno, N.; Nakanishi, S. Nature 1991, 354, 31.
5. Chenard, B. L.; Menniti, F. S. Curr. Pharm. Des. 1999, 5,
381.
6. Williams, K. Mol. Pharmacol. 1993, 44, 851.
7. Chenard, B. L.; Bordner, J.; Butler, T. W.; Chambers,
L. K.; Collins, M. A.; De Costa, D. L.; Ducat, M. F.;
Dumont, M. L.; Fox, C. B.; Mena, E. E.; Meniti, F. S.; Niel-
sen, J.; Pagnozzi, M. J.; Richter, K. E. G.; Ronau, R. T.;
Shalaby, I. A.; Stemple, J. Z.; White, W. F. J. Med. Chem.
1995, 38, 3138.
8. Fischer, G.; Mutel, V.; Trube, G.; Malherbe, P.; Kew,
J. N. C.; Mohacsi, E.; Heitz, M. P.; Kemp, J. A. J. Pharmacol.
Exp. Ther. 1997, 283, 1285.
9. Shalaby, I. A.; Chenard, B. L.; Prochniak, M. A.; Butler,
T. W. J. Pharmacol. Exp. Ther. 1992, 260, 925.
10. Menniti, F.; Chenard, B.; Collins, M.; Ducat, M.; Sha-
laby, I.; White, F. Eur. J. Pharmacol. 1997, 331, 117.
11. Fischer, G.; Bourson, A.; Kemp, J. A.; Lorez, H. P. Neu-
roscience Annual Meeting, Nov. 16–21, 1996, Washington,
DC
12. Boyce, S.; Wyatt, A.; Webb, J. K.; O’Donnell, R.; Mason,
G.; Rigby, M.; Sirinathsinghji, D.; Hill, R. G.; Rupniak, N. M.
J. Neuropharm. 1999, 38, 611.
In vivo activity was measured in mice after ip adminis-
tration using the standard sound-induced seizures
assay.24 As shown in Table 2, both compounds were
found to be in vivo active, indicating that they both
penetrate into the brain. However, R-(ꢀ)-26 (ED50
10 mg/kg) showed a better protective effect. Interest-
ingly, the difference of potency at the NMDA receptor
observed for the two enantiomers clearly translates into
a difference in in vivo activity.
In an in vitro functional assay performed in Xenopus
oocytes expressing recombinant rat (NR1C/2A) and
(NR1C/2B) subtypes,8 R-(ꢀ)-26 blocked the NR2B-
containing NMDA receptor withihghaffinity (IC
50
19 nM) (Table 2) and the selectivity for the NR2B versus
NR2A subunits was found to be greater than 500-fold.
13. Kew, J. N. C.; Trube, G.; Kemp, J. A. J. Phys. 1996, 497,
761.
14. Taniguchi, K.; Shinjo, K.; Mizutani, M.; Shimada, K.;
Ishikawa, O.; Menniti, F. S.; Nagahisa, A. Br. J. Pharmacol.
1997, 122, 809.
15. Wright, J. L.; Gregory, T. F.; Boxer, P. A.; Meltzer, L. T.;
Serpa, K. A.; Wise, L. D. Bioorg. Med. Chem. Lett. 1999, 9,
2815.
Conclusion
Starting from Ro-25-6981 3 as a lead compound, highly
potent NR1/2B subtype selective NMDA antagonists
were prepared. The a1 adrenergic activity could be
separated from the NMDA receptor activity through
introduction of hydroxyl groups at the 2-position on the
central linker and at the 4-position on the piperidine
ring. From this series, R-(ꢀ)-26 was identified as the
most potent and selective derivative and was found to
be active in vivo.
16. Becker, H.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl.
1996, 35, 448.
1
17. Enantiomeric excesses were determined by H NMR ana-
lysis of the corresponding bis-MPTA Mosher esters.
18. The preparation of the S-configured epoxide 24 has
already been described using (S)-epichlorohydrin as starting
material.22 The described optical rotation for 24 was [a]2D0
+0.8ꢁ (c 1, CHCl3).
19. Kolb, H. C.; Sharpless, K. B. Tetrahedron 1992, 48, 10515.
20. 25: [a]2D0 +11ꢁ (c 0.5, MeOH) and 26: [a]2D0 ꢀ10 ꢁ (c 0.5,
MeOH) were found to be enantiomerically pure using a chiral
phase HPLC (Chiracel OD-H, 250ꢄ4.6 mm, detection at
285 nm, flow: 1.5 mL/min, mobile phase: n-hexane/ethanol/
triethylamine, 99.40/0.56/0.04; 25: Rt=15.7 min and 26:
Rt=11.4 min).
21. Tamiz, A. P.; Whittemore, E. R.; Zhou, Z. L.; Huang,
J. C.; Drewe, J. A.; Chen, J. C.; Cai, S. X.; Weber, E.; Wood-
ward, R. M.; Keana, J. F. W. J. Med. Chem. 1998, 41, 3499.
22. Takano, S.; Iwabuchi, Y.; Ogasawara, K. Heterocycles
1989, 29, 1861.
Acknowledgements
The skilful technical assistance of S. Burner, T. Muser,
and J. Padilla is gratefully acknowledged. The authors
wishto thank W. Arnold, V. Meduna and W. Meister
for spectroscopic characterisation.
References and Notes
23. Mutel, V.; Buchy, D.; Klingelschmidt, A.; Messer, J.;
Bleuel, Z.; Kemp, J. A. J. Neurochem. 1998, 70, 2147.
24. Bourson, A.; Kapps, V.; Zwingelstein, C.; Rudler, A.;
Boess, F. G.; Sleight, A. J. Naunyn-Schmiedeberg’s Arch.
Pharmacol. 1997, 356, 820.
1. Kemp, J. A.; Kew, J. N. C.; Gill, R. In Handbook of
Experimantal Pharmacology; Jonas, P., Monyer, H., Eds.;
Springer: Berlin/Heidelberg, 1999; Vol. 141, pp 495–527.
2. Gill, R.; Kemp, J. A.; Richards, J. G.; Kew, J. N. C. Curr.
Opin. Cardiovasc., Pulm. Renal Invest. Drugs 1999, 1, 576.