C. D. Edlin et al. / Tetrahedron Letters 47 (2006) 1145–1151
1151
´
Catal. 2002, 344, 634–637; Ferre-Filmon, K.; Delaude, L.;
Demonceau, A.; Noels, A. F. Eur. J. Org. Chem. 2005,
3319–3325; For guiding principles see: Chatterjee, A. K.;
Choi, T.-L.; Sanders, W. P.; Grubbs, R. H. J. Am. Chem.
Soc. 2003, 125, 11360–11370.
of pent-4-enal 16, reduction (Dibal-H), imidate forma-
tion followed by Overman rearrangement led directly
to trichloroacetamide 32 in 87% overall yield. Gratify-
ingly, thermolysis of a solution of 32 in xylenes contain-
ing catalyst 1b (5 mol %) afforded lactam 33 as a single
diastereoisomer in 91% isolated yield. Dechlorination
(Zn–HOAc(aq)) of 33 proved to be highly selective
affording the mono-chlorolactam 3420 in 73% yield
(Scheme 12). In contrast to SnapperÕs report,9 we find
that although the second generation catalyst 1b converts
32 slowly to lactam 33 it does so in a more reproducible
manner than with the first generation catalyst 1a.
11. Concurrent catalysis has precedent in the polymer litera-
ture: Bielawski, C. W.; Louie, J.; Grubbs, R. H. J. Am.
Chem. Soc. 2000, 122, 12872–12973; For dual reactivity
(ATRP and metathesis) see: Delaude, L.; Delfosse, S.;
Richel, A.; Demonceau, A.; Noels, A. F. Chem. Commun.
2003, 1526–1527, and references cited therein.
12. The copper(I)-dHbipy system affords 7 as a 1:1 mixture of
diastereoisomers.
13. c.f. Formentın, P.; Gimeno, N.; Steinke, J. H. G.; Vilar, R.
´
J. Org. Chem. 2005, 70, 8235–8238; Furstner, A.; Thiel, O.
¨
In conclusion, we have demonstrated that the Grubbs
metathesis catalysts can not only promote metathesis
and ATRC reactions,1,6 but that the two separate reac-
tions can be telescoped together providing rapid access
to bicyclic lactones and lactams. We anticipate that
the use of organometallic catalysts in this manner may
have substantial applications in organic synthesis and
is an area which we are now actively pursuing.
R.; Ackermann, L.; Schanz, H.-J.; Nolan, S. P. J. Org.
Chem. 2000, 65, 2204–2207; For a timely review see:
Escoubet, S.; Gastaldi, S.; Bertrand, M. Eur. J. Org.
Chem. 2005, 3855–3873.
14. This may be due to the formation of stable, metathetically
inactive, chelated complexes. For discussion see: Zaja, M.;
Connon, S. J.; Dunne, A. M.; Rivand, M.; Buschmann,
N.; Jiricek, J.; Blechert, S. Tetrahedron 2003, 59, 6545–
6558.
15. See: Davis, C. J.; Hurst, T. E.; Jacob, A. M.; Moody, C. J.
J. Org. Chem. 2005, 70, 4414–4422; Castro, A. M. M.
Chem. Rev. 2004, 104, 2939–3002, and references cited
therein.
16. See: Rivard, M.; Blechert, S. Eur. J. Org. Chem. 2003,
2225–2228, for an example of the activating effect of Cu(I)
salts in CM reactions.
Acknowledgements
We thank the EPSRC and GSK for support of this
research.
References and notes
17. Zanoni, G.; Castronovo, F.; Perani, E.; Vidari, G. J. Org.
Chem. 2003, 68, 6803–6805; Lactone 20 has also been
prepared previously: Fleming, I.; Au-Yeung, B.-W. Tetra-
hedron 1981, 37, 13–24.
1. Quayle, P.; Fengas, D.; Richards, S. Synlett 2003, 1797–
1800.
18. Quebatte, L.; Solari, E.; Scopelliti, R.; Severin, K.
Organometallics 2005, 24, 1404–1406; Quebatte, L.;
Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2004,
43, 1520–1524.
2. Grubbs, R. H. Tetrahedron 2004, 60, 7117–7140; Nico-
laou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int.
Ed. 2005, 44, 4490–4527.
3. Edlin, C. D.; Faulkner, J.; Fengas, D.; Knight, C. K.;
Parker, J.; Preece, I.; Quayle, P.; Richards, S. N. Synlett
2005, 572–576.
19. Intermolecular Kharasch reactions with buta-1,3-dienes
has precedent: (a) Startsev, V. V.; Zubbritskii, L. M.;
Petrov, A. A. Zh. Obsch. Khim. 1985, 55, 702–703; For
the preparation of c-butyrolactones via intermolecular
Kharasch reactions see: Nakano, T.; Oh-Hashi, N.; Ino,
Y.; Nagai, Y. Main Group Met. Chem. 2000, 23, 259–264;
Matsumoto, H.; Nakano, T.; Ohkawa, K.; Nagai, Y.
Chem. Lett. 1978, 363–366; For related SN2 and SN20
cyclization reactions see: (b) Schomburg, D.; Landrey, D.
N. J. Org. Chem. 1981, 46, 170–172; Bolster, M. G.;
Lagnel, B. M. F.; Jansen, B. J. M.; Morin, C.; de Groot,
A. Tetrahedron 2001, 57, 8369–8379; Ammann, W.;
Pfund, R. A.; Ganter, C. Helv. Chim. Acta 1982, 65,
986–1020; Ka¨nel, H.-R.; Ganter, C. Helv. Chim. Acta
1985, 68, 1226–1234; The suprafacial 1,3-allylic intercon-
version of i and ii has been desrcibed (Chiche, L.;
4. For representative examples see: Maifeld, S. V.; Tran, M.
N.; Lee, D. Tetrahedron Lett. 2005, 46, 105–108; Hahn,
D.-W.; Byun, D.-M.; Tae, J. Eur. J. Org. Chem. 2005, 63–
67; Lopez, F.; Delgado, A.; Rodriguez, J. R.; Castedo, L.;
Mascarenas, J. L. J. Am. Chem. Soc. 2004, 126, 10262–
10263.
5. For seminal investigations in this area see: Dinger, M. B.;
Mol, J. C. Eur. J. Inorg. Chem. 2003, 2827–2833; Banti, D.;
Mol, J. J. Organomet. Chem. 2004, 689, 3113–3116; Hong,
S. H.; Day, M. W.; Grubbs, R. H. J. Am. Chem. Soc. 2004,
126, 7414–7415; Trnka, T. M.; Morgan, J. P.; Sanford, M.
S.; Wilhelm, T. E.; Scholl, M.; Choi, T.-L.; Ding, S.; Day,
M. W.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 2546–
2558; For a theoretical treatment see: van Rensburg, W. J.;
Steynberg, P. J.; Meyer, W. H.; Kirk, M. M.; Forman, G.
S. J. Am. Chem. Soc. 2004, 126, 14332–14333.
6. Faulkner, J.; Edlin, C. D.; Fengas, D.; Preece, I.; Quayle,
P.; Richards, S. N. Tetrahedron Lett. 2005, 46, 2381–2385.
7. Ajamian, A.; Gleason, J. L. Angew. Chem., Int. Ed. 2004,
43, 3754–3760.
8. Fogg, D. E.; dos Santos, E. N. Coord. Chem. Rev. 2004,
248, 2365–2679; Schmidt, B. Eur. J. Org. Chem. 2004,
1865–1880; Wasilke, J.; Obrey, S. J.; Baker, R. T.; Bazan,
G. C. Chem. Rev. 2005, 105, 1001–1020.
´
Christol, H.; Coste, J.; Pietrasanta, F.; Plenat, F. Can. J.
Chem. 1981, 59, 164–174), as has their conversion into
the lactone iii.
CO2Me
CO2Me
Cl
H
H
H
O
Cl
Cl
O
H
Cl
ii
iii
i
9. Seigal, B. A.; Fajardo, C.; Snapper, M. L. J. Am. Chem.
Soc. 2005, 127, 16329–16332.
10. For CM approaches to styrenes see: Chatterjee, A. K.;
Toste, D. F.; Choi, T.-L.; Grubbs, R. H. Adv. Synth.
20. All new compounds were fully characterized by high field
1H and 13C NMR, IR, mass spectrometry (low and high
resolution) and/or combustion microanalysis.