10.1002/chem.201902273
Chemistry - A European Journal
FULL PAPER
without further purification. 12-Bromo-1-dodecanol (>98%) was purchased
from TCI. Dimethyl icosanedioate (>95%) was purchased from TCI. 2,2’-
Azobisisobutyronitrile (AIBN) (98%) was purchased from Sigma Aldrich
and was recrystallized from ethanol before use. Milli-Q water was provided
by a Sartorius Arium 611 VF Purification System.
Keywords: azobenzene • photoisomerization • photoresponsive
• polymers • self-healing
[1]
a) H. Zhou, C. Xue, P. Weis, Y. Suzuki, S. Huang, K. Koynov, G. K.
Auernhammer, R. Berger, H.-J. Butt, S. Wu, Nat. Chem. 2017, 9, 145-
151; b) A. Pipertzis, A. Hess, P. Weis, G. Papamokos, K. Koynov, S. Wu,
G. Floudas, ACS Macro Letters 2018, 7, 11-15.
Synthesis: The synthesis route of the P-n-Azo polymers is shown in
Scheme S1. Details of syntheses and characterization of the azopolymers
are provided in the Supporting Information (Figures S1-S20).
[2]
[3]
[4]
G. S. Kumar, D. C. Neckers, Chem. Rev. 1989, 89, 1915-1925.
F. Ercole, T. P. Davis, R. A. Evans, Polym. Chem. 2010, 1, 37-54.
H. Rau, in Photochemistry and Photophysics, Vol. 2 (Ed.: J. Rabeck),
Boca Raton, FL, 1990, pp. 119-141.
Methods: Proton and carbon nuclear magnetic resonance (NMR) spectra
were recorded on a Bruker Avance 250 MHz, 300 MHz or 500 MHz
spectrometer. Mass spectra (MS) were obtained using a VG instrument
ZAB 2-SE-FPD. The molecular weights and molecular weight distributions
of P-n-Azo were determined using an Agilent Technologies 1260 Infinity
PSS SECurity GPC (pump: 1260 IsoPump) equipped with UV and RI
detectors running in tetrahydrofuran (THF) at 30 °C and a PLgel MIXED-B
column (dimension: 0.8 × 30 cm, particle size: 10 µm) with a polystyrene
standard. UV-vis absorption spectra were recorded on a Perkin Elmer
Lambda 900 spectrometer. Baselines were corrected and spectra were
normalized using OriginPro software. Optical microscopy images were
captured on a Zeiss optical microscope equipped with a CCD camera.
Thermogravimetric analysis (TGA) was carried out on a Mettler Toledo
[5]
a) Y. Okui, M. Han, Chem. Commun. 2012, 48, 11763-11765; b) H.
Akiyama, M. Yoshida, Adv. Mater. 2012, 24, 2353-2356; c) Y. Norikane,
E. Uchida, S. Tanaka, K. Fujiwara, H. Nagai, H. Akiyama, J. Photopolym.
Sci. Tec. 2016, 29, 149-157; d) E. Uchida, R. Azumi, Y. Norikane, Nat.
Commun. 2015, 6, 7310; e) M. Hoshino, E. Uchida, Y. Norikane, R.
Azumi, S. Nozawa, A. Tomita, T. Sato, S.-i. Adachi, S.-y. Koshihara, J.
Am. Chem. Soc. 2014, 136, 9158-9164; f) Y. Norikane, E. Uchida, S.
Tanaka, K. Fujiwara, E. Koyama, R. Azumi, H. Akiyama, H. Kihara, M.
Yoshida, Org. Lett. 2014, 16, 5012-5015; g) T. Yamamoto, Y. Norikane,
H. Akiyama, Polym. J. 2018, 50, 551-562; h) M. Baroncini, S. d'Agostino,
G. Bergamini, P. Ceroni, A. Comotti, P. Sozzani, I. Bassanetti, F.
Grepioni, T. M. Hernandez, S. Silvi, M. Venturi, A. Credi, Nat. Chem.
2015, 7, 634-640.
TGA-851 under nitrogen atmosphere with a heating rate of 10 °C min−1
.
DSC data were collected using a Mettler Toledo DSC-822 under nitrogen
atmosphere. The polymers were measured with a heating or cooling rate
of 10 °C min-1. The shear moduli were measured using a homemade
piezo-rheometer in shear mode at 18 °C.[20] A cis azopolymer sample with
a thickness of 100 μm was sandwiched between two quartz plates that
were used as transparent sample holders. Firstly, the shear moduli of cis
azopolymers were measured in a dark environment to prevent possible
light-induced transitions. Subsequently, cis azopolymers between the
quartz plates were converted to trans azopolymers by 530 nm light
irradiation. Trans azopolymers were measured by the piezo-rheometer
under the same conditions. DMA was conducted on an Advanced
Rheometric Expansion System (ARES, Rheometric Scientific Company).
Shear deformation was applied under conditions of controlled deformation
amplitude, which was kept in the range of the linear viscoelastic response
of the studied samples. Plate-plate geometry was used with plate
diameters of 6 mm. The experiments were conducted under dry nitrogen
atmosphere at a heating rate of 3 °C min-1 and a constant deformation
frequency of 1 or 10 rad s-1. Photoisomerization was induced by LEDs with
wavelengths of 365 nm, 470 nm and 530 nm (Mightex Systems, device
types LCS-0365-07-22, LCS-0470-03-22 and LCS-0530-15-22,
respectively). The output intensities were controlled by an LED controller
(Mightex Systems, device type SLC-MA04-MU), calibrated by an optical
powermeter (Spectra-Physics Corporation, Model 407A). Preparation of
cis polymers for DSC and DMA measurements was described in our
previous paper.[1a] An MMO-203 hydraulic micromanipulator (Narishige,
Tokyo, Japan) equipped with an AFM cantilever was used to scratch
polymer films.
[6]
a) J.-I. Anzai, T. Osa, Tetrahedron 1994, 50, 4039-4070; b) J. Stumpe,
T. Fischer, H. Menzel, Macromolecules 1996, 29, 2831-2842; c) J. M.
Kuiper, J. B. F. N. Engberts, Langmuir 2004, 20, 1152-1160; d) S. Wu, L.
Wang, A. Kroeger, Y. Wu, Q. Zhang, C. Bubeck, Soft Matter 2011, 7,
11535-11545; e) P. Rochon, J. Gosselin, A. Natansohn, S. Xie, Appl.
Phys. Lett. 1992, 60, 4-5.
[7]
[8]
H. Akiyama, T. Fukata, A. Yamashita, M. Yoshida, H. Kihara, J. Adhesion
2017, 93, 823-830.
a) L. Zhang, H. Liang, J. Jacob, P. Naumov, Nat. Commun. 2015, 6,
7429; b) Y. Yu, M. Nakano, T. Ikeda, Nature 2003, 425, 145-145; c) W.
Wu, L. Yao, T. Yang, R. Yin, F. Li, Y. Yu, J. Am. Chem. Soc. 2011, 133,
15810-15813; d) H. Yu, T. Ikeda, Adv. Mater. 2011, 23, 2149-2180; e) J.
Hu, X. Li, Y. Ni, S. Ma, H. Yu, J. Mater. Chem. C 2018, 6, 10815-10821.
a) A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, M.
Kaivola, Adv. Mater. 2011, 23, 4174-4177; b) W. Wang, C. Du, X. Wang,
X. He, J. Lin, L. Li, S. Lin, Angew. Chem. Int. Ed. 2014, 53, 12116-12119;
c) X. Kong, X. Wang, T. Luo, Y. Yao, L. Li, S. Lin, ACS Appl. Mater. &
Interfaces 2017, 9, 19345-19353; S. Huang, Y. Chen, S. Ma, H. Yu,
Angew. Chem. Int. Ed. 2018, 57, 12524-12528
[9]
[10] a) R. Wei, J. Ma, H. Zhang, Y. He, J. Appl. Polym. Sci. 2016, 133; b) J.
Wang, S. Wang, Y. Zhou, X. Wang, Y. He, ACS Appl. Mater. Interfaces
2015, 7, 16889-16895; c) Y. Li, Y. He, X. Tong, X. Wang, J. Am. Chem.
Soc. 2005, 127, 2402-2403.
[11] T. J. Kucharski, N. Ferralis, A. M. Kolpak, J. O. Zheng, D. G. Nocera, J.
C. Grossman, Nat. Chem. 2014, 6, 441-447.
[12] a) P. Weis, W. Tian, S. Wu, Chem. Eur. J. 2018, 24, 6494-6505; b) S. Ito,
A. Yamashita, H. Akiyama, H. Kihara, M. Yoshida, Macromolecules 2018,
51, 3243-3253; c) S. Ito, H. Akiyama, R. Sekizawa, M. Mori, M. Yoshida,
H. Kihara, ACS Appl. Mater. Interfaces 2018, 10, 32649-32658; d) R. H.
Zha, G. Vantomme, J. A. Berrocal, R. Gosens, B. de Waal, S. Meskers,
E. W. Meijer, Adv. Funct. Mater. 2018, 28, 1703952; e) W.-C. Xu, S. Sun,
S. Wu, Angew. Chem. Int. Ed. 2019, in press, 10.1002/anie.201814441.
[13] a) C. Appiah, G. Woltersdorf, R. A. Pérez-Camargo, A. J. Müller, W. H.
Binder, Eur. Polym. J. 2017, 97, 299-307; b) Y. Yue, Y. Norikane, R.
Azumi, E. Koyama, Nat. Commun. 2018, 9, 3234.
Acknowledgements
We acknowledge technical support from J. Thiel, A. Best, A.
Hanewald, Dr. M. Kappl and helpful discussions with Prof. G.
Floudas. G. K. A. and S. H. acknowledge financial support by
DFG through the SPP 1681 (grant number AU 321/3). This work
was supported by the Deutsche Forschungsgemeinschaft (DFG,
WU 787/2-1 and WU 787/8-1), the Thousand Talents Plan, and
the Fonds der Chemischen Industrie (FCI, No. 661548).
[14] K. Nishizawa, S. Nagano, T. Seki, Chem. Mater. 2009, 21, 2624-2631.
[15] a) H. Menzel, B. Weichart, A. Schmidt, S. Paul, W. Knoll, J. Stumpe, T.
Fischer, Langmuir 1994, 10, 1926-1933; b) X. Tong, L. Cui, Y. Zhao,
Macromolecules 2004, 37, 3101-3112.
This article is protected by copyright. All rights reserved.