used.7 In fact, these NAD(P)H model compounds them-
selves generally possess excellent reducibility, so that
they may be effectively applied in the reduction of many
unsaturated substrates.8
P olysiloxa n e-Su p p or ted NAD(P )H Mod el
1-Ben zyl-1,4-d ih yd r on icotin a m id e:
Syn th esis a n d Ap p lica tion in th e Red u ction
of Activa ted Olefin s
As green chemistry has become a major concern to
organic chemists in recent years,9 solid or solid-supported
catalysts have received much more attention, because
they may offer several advantages in preparative proce-
dures, e.g., simplifying workup and separation and
recycling of the catalyst. These features may lead to
economical automation and may effectively reduce pol-
lution of hazardous compounds, advancing to an envi-
ronmentally benign process.10 In this connection, immo-
bilizing NAD(P)H models not only provides a novel design
for a new reductant, but may also lead to an efficient
green methodology for organic synthesis. In a previous
paper,11 a polymer-bound NAD(P)H model was reported,
which consisted of NAD(P)H model 1-benzyl-1,4-dihy-
dronicotinamide and a copolymer of styrene and divinyl-
benzene (Merrifield-type resin). However, Merrifield
resin is largely affected by solvents, i.e., swelling in an
organic medium and contracting in an aqueous solvent,
which evidently retards the reduction of the NAD(P)+
model moiety inside the polymer in a basic aqueous medi-
um in the preparation of the polymer-bound NAD(P)H
model. SiO2 is an inorganic support and is little affected
by solvents. Recently, SiO2 has received much attention
in catalyst immobilization and solid-phase synthesis,12
and a few papers concerning the immobilization of a
NAD(P)H model on silica have appeared, which was
performed by grafting silica onto the nitrogen atom at
the 1-position on the pyridine ring.13 As well-known, the
Baolian Zhang,† Xiao-Qing Zhu,*,† J in-Yong Lu,†
J iaqi He,† Peng G. Wang,‡ and J in-Pei Cheng*,†
State Key Laboratory of Elemento-Organic Chemistry,
Department of Chemistry, Nankai University,
Tianjin 300071, China, and Department of Chemistry,
Wayne State University, Detroit, Michigan 48202
xqzhu@nankai.edu.cn
Received May 6, 2002
Abstr a ct: A new polysiloxane-supported NAD(P)H model,
1-benzyl-1,4-dihydronicotinamide, was designed and syn-
thesized, which can efficiently reduce many activated olefins
under mild conditions. The most advantageous features of
this new polysiloxane-supported reductant are (i) easy
workup and separation of the reaction products and (ii) good
potential for recycling use of the reductant, which makes
this new polysiloxane-supported NAD(P)H model a promis-
ing alternative both in research laboratories and in indus-
trial processes.
Nicotinamide adenine dinucleotide (NADH) and its
phosphate derivative (NADPH) have long been known
to act as coenzymes in biological redox reactions. It was
established that in the reduced form of the coenzyme the
active part is 1,4-dihydropyridine.1 Thus, 1-benzyl-1,4-dihy-
dronicotinamide (BNAH), Hantzsch 1,4-dihydropyridine
(HEH), 10-methyl-9,10-dihydroacridine (AcrH2), and many
other 1,4-dihydropyridine derivatives are widely used as
models to mimic the function of NAD(P)H in biological
reductions of various unsaturated compounds.2-6 Tre-
mendous activities have been carried out to focus on the
mechanistic details of these systems. To our knowledge,
however, little attention has been paid to these models
acting as reducing agents in organic synthesis except for
a few cases where some chiral NAD(P)H models were
(6) (a) Zhu, X.-Q.; Liu, Y.-C.; Cheng, J .-P. J . Org. Chem. 1999, 64,
8980-1. (b) Zhu, X.-Q.; Liu, Y.-C.; Wang, H.-Y.; Wang W. J . Org. Chem.
1999, 64, 8982-3. (c) Zhu, X.-Q.; Liu, Y.-C. J . Org. Chem. 1998, 63,
2786. (d) Zhu, X.-Q.; Zou, H.-L.; Yang, P.-W.; Liu, Y.; Cao, L.; Cheng,
J .-P. J . Chem. Soc., Perkin Trans 2 2000, 1857-61. (e) Li, B.; Liu,
Y.-C.; Guo, Q.-X. J . Photochem. Photobiol., A 1997, 103, 101. (f) Wang,
H.-Y.; Liu, Y.-C.; Zhu, X.-Q.; Guo, Q.-X. Chin. J . Chem. 1999, 17, 1884.
(7) (a) Ohno, A.; Tsutsumi, A.; Kawai, Y.; Yamazaki, N.; Kikata,
Y.; Okamura, M. J . Am. Chem. Soc. 1994, 116, 8133. (b) Skog, K.;
Wennerstrom, O. Tetrahedron Lett. 1992, 33, 1751. (c) Kanomata, N.;
Nakata, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 1207-11. (d)
Combret, Y.; Duflos, J .; Dupas, G.; Bourguignon, J .; Queguiner, G.
Tetrahedron: Asymmetry 1993, 4, 1635. (e) Bedat, J .; Levacher, V.;
Dupas, G.; Queguiner, G.; Bourguignon, J . Chem. Lett. 1995, 327. (f)
De Kok, P, M. T.; Bastiaansen, L. A. M.; Van Lier, P. M.; Vekemans,
J . A. J . M.; Buck, H. M. J . Org. Chem. 1989, 54, 1313.
(8) Zhu, X.-Q.; Wang, H.-Y.; Wang, J .-S.; and Liu, Y.-C. J . Org.
Chem. 2001, 66, 344-7.
(9) (a) Anastas, P. T.; Warner, J . C. Green Chemistry; Oxford
University Press: Oxford, 2000; pp 14-99. (b) Sauer, N. N. Green
Chemistry: Frontiers in Benign Chemical Syntheses and Processes;
Oxford University Press: New York, 1999.
(10) (a) Seeberger, P. H.; Danishefsky, S. J . Acc. Chem. Res. 1998,
31 (10), 685-95. (b) Sammelson, R. E.; Kurth, M. J . Chem. Rev. 2001,
101 (1), 137-202. (c) Lorsbach, B. A.; Kurth, M. J . Chem. Rev. 1999,
99 (6), 1549-82.
(11) (a) Dupas, G.; Bourguignon, J .; Ruffin, C.; Queguiner, G..
Tetrahedron Lett. 1982, 23, 5141-5144. (a) Vitry, C.; Vasse, J .-L.;
Dupas, G.; Levacher, V.; Queguiner, G.; Bourguignon, J . Tetrahedron
2001, 57, 3098.
† Nankai University.
‡ Wayne State University.
(1) Murakami, Y.; Kikuchi, J .; Hisaeda, Y. and Hayashida, O. Chem.
Rev. 1996, 96, 721.
(2) (a) Fukuzumi, S.; Yorsisue, T. Bull. Chem. Soc. J pn. 1992, 65,
715-9. (b) Coleman, C, A.; Rose, J . G.; Murray, C. J . J . Am. Chem.
Soc. 1992, 114, 9755-62. (c) Fukuzumi, S.; Nishizawa, N.; Tanaka, T.
J . Org. Chem. 1984, 49, 3571-8.
(3) (a) Beijer, N. A.; Vekemans, J . A. J . M.; Buck, H. Recl. Trav.
Chim. Pays-Bas 1990, 109, 434-6. (b) Fukuzumi, S.; Mochizuki, S.
Tanaka, T. J . Am. Chem. Soc. 1989, 111, 1497-9. (c) Tanner, D. D.;
Singh, H. K.; Kharrat, A.; Stain, A. R. J . Org. Chem. 1987, 52, 2141.
(d) Tanner, D. D.; Stain, A. R. J . Org. Chem. 1988, 53, 1642.
(4) (a) Kanomata, N.; Suzuki, M.; Yoshida, M.; Nakata, T. Angew.
Chem., Int. Ed. 1998, 37, 1410-2. (b) Fukuzumi, S.; Ishikama, M.;
Tanaka, T. Tetrahedron 1984, 42, 1021-34. (c) Singh, S.; Sharma, V.
K. Tetrahedron Lett. 1979, 29, 2733-4. (d) Merjer, H. P.; Van Niel, J .
C. G.; Pandit, U. K. Tetrahedron 1984, 40, 5185. (e) De Nie-Sarink,
M. J .; Pandit, U. K. Tetrahedron Lett. 1979, 26, 2449-52.
(5) (a) Lu, Y.; Liu, B.; Cheng, J .-P. Chem. J . Chin. Univ. 1997, 18,
391. (b) Merjer, H. P.; Van Niel, J . C. G.; Pandit, U. K. Tetrahedron
1984, 40, 5185. (c) De Nie-Sarink, M. J .; Pandit, U. K. Tetrahedron
Lett. 1979, 26, 2449-2452. (d) Singh, S.; Sharma, V. K. Tetrahedron
Lett. 1979, 29, 2733-4.
(12) (a) Nakamura, K.; Fujii, M.; Ohno, A.; Oka, S. Tetrahedron Lett.
1984, 25 (36), 3983. (b) Nakamura, K.; Fujii, M.; Oka, S.; Ohno, A.
Chem. Lett. 1985, 523. (c) Yasui, S.; Fujii, M.; Nakamura, K.; Ohno,
A. Bull. Chem. Soc. J pn. 1987, 60, 963-8. (d) Fujii, M.; Nakamura,
K.; Yasui, S.; Ohno, A. Bull. Chem. Soc. J pn. 1987, 60, 2423-7. (e)
Yasui, S.; Fujii, M.; Ohno, A. Bull. Chem. Soc. J pn. 1987, 60, 4019-
26.
10.1021/jo020319x CCC: $25.00 © 2003 American Chemical Society
Published on Web 03/25/2003
J . Org. Chem. 2003, 68, 3295-3298
3295