Job/Unit: I30334
/KAP1
Date: 17-07-13 16:54:05
Pages: 9
FULL PAPER
Rauk[40,41] has been performed on trans-[PdBrL(PPh3)2]+ (L = 5–
10) by using ADF2010.02[42–44] at the BP86/TZ2P level with in-
clusion of the zero-order regular approximation (ZORA) scalar rel-
ativistic scheme based on optimized geometries obtained at the ma-
rij-BP86/def2-SVP level by using Turbomole v6.3.1.[45] The core
electrons [1s for C and N, (He)2s2p for P, (Ne)3s3p for Br, (Ne)-
3s3p3d for Pd] were treated with the frozen-core approximation.
The interaction energy ΔEint between L and the [PdBr(PPh3)2]+
fragment is decomposed into electrostatic, Pauli repulsion and or-
bital-mixing components as in Equation (1).
[13] E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswa-
ran, G. Frenking, G. Bertrand, Science 2009, 326, 556.
[14] M. Treu, T. Karner, R. Kousek, H. Berger, M. Mayer, D. B.
McConell, A. Stadler, J. Comb. Chem. 2008, 10, 863.
[15] For oxidative addition of C2–X bonds in azolium salts usually
affords normal NHC complexes, see: P. J. Fraser, W. R. Roper,
F. G. A. Stone, J. Chem. Soc., Dalton Trans. 1974, 102.
[16] For oxidative addition of C2–X bonds in neutral benzimid-
azoles affords complexes of anionic heterocyclic ligands that
can be N-protonated or N-alkylated to give normal NHC com-
plexes, see: T. Kösterke, T. Pape, F. E. Hahn, J. Am. Chem. Soc.
2011, 133, 2112.
[17] O. Schuster, H. G. Raubenheimer, Inorg. Chem. 2006, 45, 7997.
[18] O. Kaufhold, F. E. Hahn, Angew. Chem. 2008, 120, 4122; An-
gew. Chem. Int. Ed. 2008, 47, 4057.
[19] H. V. Huynh, G. Frison, J. Org. Chem. 2013, 78, 328.
[20] H. Doucet, J.-C. Hierso, Angew. Chem. 2007, 119, 850; Angew.
Chem. Int. Ed. 2007, 46, 834.
ΔEint = ΔEelstat + ΔEPauli + ΔEorb
(1)
This methodology, at the BP86/TZ2P level of calculation, has been
widely used to analyse chemical bonds, in particular those of orga-
nometallic complexes with divalent carbon ligands.[46]
[21] R. Chinchilla, C. Nájera, Chem. Rev. 2007, 107, 874.
[22] A. Köllhofer, H. Plenio, Adv. Synth. Catal. 2005, 347, 1295.
[23] J. C. Hierso, A. Fihri, R. Amardeil, P. Meunier, H. Doucet, M.
Santelli, V. V. Ivanov, Org. Lett. 2004, 6, 3473.
[24] M. Feuerstein, F. Berthiol, H. Doucet, M. Santelli, Org. Bio-
mol. Chem. 2003, 1, 2235.
Several calculations have been performed at various levels to con-
firm the accuracy of the metal–ligand bonding analysis (see Sup-
porting Information). Geometry optimisation of trans-
[PdBr(6)(PPh3)2]+ at the M06L/def2-SVP level[47] by using
Gaussian 09 gives a similar molecular structure to that of the marij-
BP86/def2-SVP calculation and confirms the reliability of the geo-
metries obtained at this level of calculation. The interaction ener-
gies obtained at the M06L/TZ2P or TPSSTPSS/TZ2P levels, by
using ADF2013.01 and an all-electron basis set, are similar
(TPSSTPSS) or slightly larger (M06L) in all cases than those ob-
tained at the BP86/TZ2P level, which supports our conclusions on
the relative bonding capabilities of 5–10.
[25] H. V. Huynh, L. R. Wong, P. S. Ng, Organometallics 2008, 27,
2231.
[26] W. R. Moser, A. W. Wang, N. K. Kildahl, J. Am. Chem. Soc.
1988, 110, 2816.
[27] SMART, v. 5.628, Bruker AXS Inc., Madison, Wisconsin,
2001.
[28] SAINT+, v. 6.22a, Bruker AXS Inc., Madison, Wisconsin,
2001.
[29] G. W. Sheldrick, SADABS v. 2.10, University of Göttingen,
Germany 2011.
Supporting Information (see footnote on the first page of this arti-
cle): Optimized geometries and energies.
[30] SHELXTL, v. 6.14, Bruker AXS Inc., Madison, Wisconsin,
2000.
[31] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
Acknowledgments
[32] C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
[33] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Son-
nenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Starov-
erov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N.
Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V.
Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat-
mann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D.
Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
D. J. Fox, Gaussian 09, revision B.01, Gaussian Inc., Wall-
ingford CT, 2010.
The authors thank the National University of Singapore and the
Singapore Ministry of Education for financial support (WBS R-
143-000-410-112). Technical support from the staff at the CMMAC
of our department is appreciated. In particular, we thank Ms Geok
Kheng Tan, Ms Yimian O. and Prof. Lip Lin Koh for determining
the X-ray molecular structures. This work was granted access to the
HPC resources of CINES (allocation 2012-c2012086894) by Grand
Equipement National de Calcul Intensif (GENCI).
[1] W. A. Herrmann, C. Köcher, Angew. Chem. 1997, 109, 2256;
Angew. Chem. Int. Ed. Engl. 1997, 36, 2162.
[2] D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chem.
Rev. 2000, 100, 39.
[3] F. E. Hahn, M. C. Jahnke, Angew. Chem. 2008, 120, 3166; An-
gew. Chem. Int. Ed. 2008, 47, 3122.
[4] K. F. Donnelly, A. Petronilho, M. Albrecht, Chem. Commun.
2013, 49, 1145.
[5] R. H. Crabtree, Coord. Chem. Rev. 2013, 257, 755.
[6] O. Schuster, L. Yang, H. G. Raubenheimer, M. Albrecht,
Chem. Rev. 2009, 109, 3445.
[7] Y. Han, H. V. Huynh, Dalton Trans. 2011, 40, 2141.
[8] H. G. Raubenheimer, S. Cronje, Dalton Trans. 2008, 1265.
[9] M. Melaimi, M. Soleilhavoup, G. Bertrand, Angew. Chem.
2010, 122, 8992; Angew. Chem. Int. Ed. 2010, 49, 8810.
[10] A. D. McNaught, A. Wilkinson, in: IUPAC Compendium of
Chemical Terminology, 2nd ed. (“Gold Book”), Blackwell Sci-
entific Publications, Oxford, 1997.
[11] S. Gründemann, A. Kovacevic, M. Albrecht, J. W. Faller, R. H.
Crabtree, J. Am. Chem. Soc. 2002, 124, 10473.
[12] A. R. Chianese, A. Kovacevic, B. M. Zeglis, J. W. Faller, R. H.
Crabtree, Organometallics 2004, 23, 2461.
[34]
[35]
[36]
[37]
[38]
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
A. D. Boese, J. M. L. Martin, J. Chem. Phys. 2004, 121, 3405.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7,
329.
[39]
[40]
[41]
[42]
K. Morokuma, J. Chem. Phys. 1971, 55, 1236.
T. Ziegler, A. Rauk, Inorg. Chem. 1979, 18, 1558.
T. Ziegler, A. Rauk, Inorg. Chem. 1979, 18, 1755.
G. Te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fon-
seca Guerra, S. J. A. Van Gisbergen, J. G. Snijders, T. Ziegler,
J. Comput. Chem. 2001, 22, 931.
[43]
C. Fonseca Guerra, J. G. Snijders, G. Te Velde, E. J. Baerends,
Theor. Chem. Acc. 1998, 99, 391.
Eur. J. Inorg. Chem. 0000, 0–0
8
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim