P. G. Tsoungas, M. Searcey / Tetrahedron Letters 42 (2001) 6589–6592
6591
O
OH
H3CO
H3CO
n-BuLi
18
O
N
N CHO
OLi
18
Br
CHO
10
16
O
O
Li
CHO OH
O
H3CO
H3CO
H3CO
O
Li
Br
CHO
10
17
Scheme 3.
The aldehyde 1 has also recently been used as the
starting material in a synthesis of cinnolines27 and
quinazolines28 and can be considered a common start-
ing point for the synthesis of these benzodiazines, a
feature of synthetic significance.
8. Gilchrist, T. L. Heterocyclic Chemistry, 3rd ed.; Long-
mans: Oxford, 1997.
9. (a) Green, G.; Griffith, W. P.; Hollingshead, D. A.; Ley,
S. V.; Schroder, M. J. Chem. Soc., Perkin Trans. 1 1984,
681; (b) Fohlisch, B. Synthesis 1972, 564; (c) Cope, C.;
Fenton, S. W. J. Am. Chem. Soc. 1951, 73, 1668; (d)
Thiele, J.; Gunther, O. Justus. Liebigs Ann. Chem. 1906,
347, 106; (e) Bill, J. C.; Tarbell, D. S. Org. Synth. 1954,
34, 82; (f) Reid, W.; Bodem, H. Chem. Ber. 1956, 89, 708;
(g) Weygand, F.; Kinkel, K. G.; Tietjen, D. Chem. Ber.
1950, 83, 394; (h) Hauptman, S. Chem. Ber. 1960, 93,
2604; (i) Hirano, M.; Yakabe, S.; Chikamori, I.; Clark, J.
H.; Morimoto, T. J. Chem. Res. (S) 1998, 770.
10. (a) Weygand, F.; Tietjen, D. Chem. Ber. 1951, 84, 625;
(b) Birkofer, L.; Frankus, E. Chem. Ber. 1961, 94, 216; (c)
Misiti, D.; DeMarchi, F.; Rosnati, V. Gazz. Chim. Ital.
1963, 93, 52; (d) Reid, W.; Neidhardt, G. Justus. Liebigs
Ann. Chem. 1963, 666, 148; (e) Hana, G. W.; Buchbauer,
G.; Koch, H. Monatsch Chem. 1976, 107, 945; (f) Axen-
rod, T.; Loew, L.; Pregesin, P. S. J. Org. Chem. 1968, 33,
1274; (g) Weygand, F.; Tietjen, D. Angew. Chem. 1952,
64, 458; (h) Weygand, F.; Tietjen, D. Angew. Chem. 1953,
65, 525; (i) Schlessinger, R. H.; Ponticello, I. S. J. Chem.
Soc., Chem. Commun. 1969, 1013.
11. (a) Wenkert, E.; Khatuya, H. Synth. Commun. 1999, 29,
2413; (b) Eikawa, M.; Sakaguchi, S.; Ishii, Y. J. Org.
Chem. 1999, 64, 4676.
12. Einhorn, J.; Lucke, J. L. Tetrahedron Lett. 1986, 27,
1793.
13. (a) Kotali, A.; Tsoungas, P. G. Tetrahedron Lett. 1987,
28, 4321; (b) Kotali, A.; Paulidou, G.; Glaveri, U.;
Tsoungas, P. G. Synthesis 1990, 1172.
14. Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, 3rd Ed.; Wiley Interscience: New
York, 1999.
In conclusion, a simple and convergent access to phtha-
lazines is described, which allows a diverse substitution
pattern on the benzene ring. Coupled with the arylhy-
drazone rearrangement reaction,13 this may serve as an
efficient and recommended general route for the synthe-
sis of phthalazines.
Acknowledgements
We gratefully acknowledge funding for a EU Marie
Curie Senior Research Fellowship and The Ministry of
Development, Dept. of Research and Technology,
Greece for a sabbatical leave (P.G.T.).
References
1. Wakelin, L. P. G. Med. Res. Rev. 1986, 6, 275–340.
2. (a) Wang, C. H.; Crooke, S. T. Cancer Res. 1985, 45,
3768–3773; (b) Toda, S.; Sugawara, K.; Nishiyama, Y.;
Ohbayashi, M.; Ohkusa, N.; Yamamoto, H.; Konishi,
M.; Oki, T. J. Antibiot. 1990, 43, 796–808.
3. Nagaoka, K.; Matsumoto, M.; Oono, J.; Yokoi, K.;
Ishizeki, S.; Nakashima, T. J. Antibiot. 1986, 39, 1527.
4. Boger, D. L.; Ledeboer, M.; Kume, M.; Searcey, M.; Jin,
Q. J. Am. Chem. Soc. 1999, 121, 11375–11383.
5. (a) Searcey, M.; Martin, P. N.; Howarth, N. M.; Mad-
den, B.; Wakelin, L. P. G. Bioorg. Med. Chem. Lett.
1996, 6, 1831–1836; (b) Searcey, M.; McClean, S.; Mad-
den, B.; Wakelin, L. P. G. J. Chem. Soc., Perkin Trans. 2
1997, 523–532.
15. Lee, J. G.; Cha, H. T. Tetrahedron Lett. 1992, 33, 3167.
16. At diazotation temperature of ca. −15°C, the yields of N-
and O-silyl derivatives of 3 are low (8–10%) and they
increase up to 15–20% if diazotation is carried out at
−5°C.
6. Trost, B. M.; Fleming, I. Comprehensive Organic Synthe-
17. (a) Fox, B. A.; Threllfall, T. L. Org. Synth. Coll. V 1962,
346; (b) Merlic, C. A.; Motamed, S.; Quinn, B. J. J. Org.
Chem. 1995, 60, 2265.
sis; Pergamon Press: Oxford, 1991.
7. Katritzky, A. R.; Rees, C. W. Comprehensive Hetero-
cyclic Chemistry; Pergamon Press: Oxford, 1984.