Page 5 of 7
ACS Catalysis
Nose, M.; Suzuki, H.; Suzuki, H. Nonacid Nitration of
Ketones by Cooperative Nickel/Aluminum Catalysis. J. Am.
Chem. Soc. 2016, 138, 14699−14704. b) Okumura, S.; Ebara,
T.; Semba, K.; Nakao Y. Synthesis of N-Heterocyclic Carbene
Ligands for Site-Selective C-H Alkylation by Cooperative
Nickel/Aluminum Catalysis. Heterocycles, 2019, 99,
1128−1144.
Benzenedicarboxylic and Naphthalenecarboxylic Acid Esters.
J. Org. Chem. 2001, 66, 4356–4360. c) Su, B.; Hartwig, J. F.
Iridium-Catalyzed, Silyl-Directed, peri-Borylation of C–H
Bonds in Fused Polycyclic Arenes and Heteroarenes. Angew.
Chem., Int. Ed. 2018, 57, 10163–10166.
1
2
3
4
5
6
7
8
(2) a) Warratz, S.; Kornhaaβ, C.; Cajaraville, A.; Niepötter, B.;
Stalke, D.; Ackermann, L. Ruthenium(II)-Catalyzed C–H
Activation/Alkyne Annulation by Weak Coordination with O2
as the Sole Oxidant. Angew. Chem., Int. Ed. 2015, 54, 5513–
5517. b) Biafora, A.; Krause, T.; Hackenberger, D.; Belitz, F.;
Gooβen, L. J. ortho-C–H Arylation of Benzoic Acids with Aryl
Bromides and Chlorides Catalyzed by Ruthenium. Angew.
Chem., Int. Ed. 2016, 55, 14752–14755. c) Zhang, L.; Zhu, L.;
Zhang, Y.; Yang, Y.; Wu, Y.; Ma, W.; Lan, Y.; You, J. Experimental
and Theoretical Studies on Ru(II)-Catalyzed Oxidative
C−H/C−H Coupling of Phenols with Aromatic Amides Using
Air as Oxidant: Scope, Synthetic Applications, and Mechanistic
Insights. ACS Catal. 2018, 8, 8324−8335. d) Tan, G.; You, Q.;
You, J. Iridium-Catalyzed Oxidative Heteroarylation of Arenes
and Alkenes: Overcoming the Restriction to Specific
Substrates. ACS Catal. 2018, 8, 8709−8714.
(3) a) Leow, D.; Li, G.; Mei, T.-S.; Yu, J.-Q. Activation of Remote
meta-C–H Bonds Assisted by an End-on Template. Nature
2012, 486, 518–522. b) Dai, H.-X.; Li, G.; Zhang, X.-G.; Stepan,
A. F.; Yu, J.-Q. Pd(II)-Catalyzed ortho- or meta-C−H Olefination
of Phenol Derivatives. J. Am. Chem. Soc. 2013, 135, 7567–
7571. c) Bera, M.; Agasti, S.; Chowdhury, R.; Mondal, R.; Pal, D.;
Maiti, D. Rhodium-Catalyzed meta-C–H Functionalization of
Arenes. Angew. Chem., Int. Ed. 2017, 56, 5272–5276.
(4) Duong, H. A.; Gilligan, R. E.; Cooke, M. L.; Phipps, R. J.; Gaunt,
M. J. Copper(II)-Catalyzed meta-Selective Direct Arylation of
α-Aryl Carbonyl Compounds. Angew. Chem., Int. Ed. 2011, 50,
463–466.
(5) a) Wang, X.-C.; Gong, W.; Fang, L.-Z.; Zhu, R.-Y.; Li, S.; Engle, K.
M.; Yu, J.-Q. Ligand-Enabled meta-C–H Activation Using a
Transient Mediator. Nature 2015, 519, 334–338. b) Wang, P.;
Farmer, M. E.; Yu, J.-Q. Ligand-Promoted meta-C–H
Functionalization of Benzylamines. Angew. Chem., Int. Ed.
2017, 56, 5125–5129. c) Shi, H.; Herron, A. N.; Shao, Y.; Shao,
Q.; Yu, J.-Q. Enantioselective Remote meta-C–H Arylation and
Alkylation via a Chiral Transient Mediator. Nature 2018, 558,
581–585.
(9) a) Ueda, K.; Yanagisawa, S.; Yamaguchi, J.; Itami, K. A General
Catalyst for the β-selective C–H Bond Arylation of Thiophenes
with Iodoarenes. Angew. Chem., Int. Ed. 2010, 49, 8946−8949.
b) Kirchberg, S.; Tani, S.; Ueda, K.; Yamaguchi, J.; Studer, A.;
Itami, K. Oxidative Biaryl Coupling of Thiophenes and
Thiazoles with Arylboronic Acids through Palladium
Catalysis: Otherwise Difficult C4-Selective C–H Arylation
Enabled by Boronic Acids. Angew. Chem., Int. Ed. 2011, 50,
2387−2391. c) Steinmetz, M.; Ueda, K.; Grimme, S.;
Yamaguchi, J.; Kirchberg, S.; Itami, K.; Studer, A. Mechanistic
Studies on the Pd-Catalyzed Direct C–H Arylation of 2-
Substituted Thiophene Derivatives with Arylpalladium
Bipyridyl Complexes. Chem. Asian J. 2012, 7, 1256−1260. d)
Funaki, K.; Sato, T.; Oi, S. Pd-Catalyzed β‑Selective Direct C–H
Bond Arylation of Thiophenes with Aryltrimethylsilanes. Org.
Lett. 2012, 14, 6186−6189. e) Yuan, K.; Doucet, H.
Benzenesulfonyl Chlorides: New Reagents for Access to
Alternative Regioisomers in Palladium-Catalysed Direct
Arylations of Thiophenes. Chem. Sci. 2014, 5, 392−396. f)
Zhang, J.; Liu, Q.; Liu, X.; Zhang, S.; Jiang, P.; Wang, Y.; Luo, S.;
Li, Y.; Wang, Q. Palladium(II)-Catalyzed meta-Selective Direct
Arylation of O-β-Naphthyl Carbamate. Chem. Commun. 2015,
51, 1297−1300. g) Jiang, P.; Li, F.; Xu, Y.; Liu, Q.; Wang, J.; Ding,
H.; Yu, R.; Wang, Q. Aromaticity-Dependent Regioselectivity in
Pd(II)-Catalyzed C−H Direct Arylation of Aryl Ureas. Org. Lett.
2015, 17, 5918−5921.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) CCDC 1912345 (1a) and 1911106 (3d) contains the
supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
request/cif.
(11) a) Itami, K.; Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei, T.;
Yoshida, J.-I. Diversity-Oriented Synthesis of Multisubstituted
Olefins through the Sequential Integration of Palladium-
Catalyzed
Cross-Coupling
Reactions.
2-
Pyridyldimethyl(vinyl)silane as a Versatile Platform for Olefin
Synthesis. J. Am. Chem. Soc. 2001, 123, 11577−11585. b) Lee,
H. S.; Kim, H. K.; Kim, S. H.; Kim, J. N. Palladium-Catalyzed,
Chelation-Assisted Stereo- and Regioselective Synthesis of
Tetrasubstituted Olefins by Oxidative Heck Arylation. Adv.
Synth. Catal. 2012, 354, 2419–2426.
(6) a) Liang, S.; Bolte, M.; Manolikakes, G. Copper-Catalyzed
Remote para-C–H Functionalization of Anilines with Sodium
and Lithium Sulfinates. Chem. Eur. J. 2017, 23, 96–100. b) Li,
J.-M.; Wang, Y.-H.; Yu, Y.; Wu, R.-B.; Weng, J.; Lu, G. Copper-
Catalyzed Remote C−H Functionalizations of Naphthylamides
(12) a) Kaspi, A. W.; Yahav-Levi, A.; Goldberg, I.; Vigalok, A.; Xenon
Difluoride Induced Aryl Iodide Reductive Elimination: a
Simple Access to Difluoropalladium(II) Complexes. Inorg.
Chem. 2008, 47, 5−7. b) Engle, K. M.; Mei, T.-S.; Wang, X.; Yu,
J.-Q. Bystanding F+ Oxidants Enable Selective Reductive
Elimination from High-valent Metal Centers in Catalysis.
Angew. Chem., Int. Ed. 2011, 50, 1478−1491.
(13) a) Wang, X.; Leow, D.; Yu, J.-Q. Pd(II)-Catalyzed para-Selective
C–H Arylation of Monosubstituted Arenes. J. Am. Chem. Soc.
2011, 133, 13864−13867. b) Luan, Y.-X.; Zhang, T.; Yao, W.-
W.; Lu, K.; Kong, L.-Y.; Lin, Y-T.; Ye, M. Amide-Ligand-
through
a Coordinating Activation Strategy and Single-
Electron-Transfer (SET) Mechanism. ACS Catal. 2017, 7,
2661–2667. c) Jing, C.; Chen, X.; Sun, K.; Yang, Y.; Chen, T.; Liu,
Y.; Qu, L.; Zhao, Y.; Yu, B. Copper-Catalyzed C4−H
Regioselective Phosphorylation/Trifluoromethylation of Free
1‑Naphthylamines. Org. Lett. 2019, 21, 486–489.
(7) a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Palladium-
Catalyzed Regioselective Mono- and Diarylation Reactions of
2-Phenylphenols and Naphthols with Aryl Halides. Angew.
Chem., Int. Ed. 1997, 36, 1740–1742. b) Grigorjeva, L.;
Daugulis, O. Cobalt-Catalyzed, Aminoquinoline-Directed
C(sp2)−H Bond Alkenylation by Alkynes. Angew. Chem., Int. Ed.
2014, 53, 10209–10212. c) Li, S.; Deng, G.-J.; Yin, F.; Li, C.-J.;
Gong, H. Rhodium-Catalyzed Regiospecific C–H ortho-
Phenylation of Benzoic Acids with Cu/Air as an Oxidant. Org.
Chem. Front. 2017, 4, 417−420. d) Moon, S.; Nishii, Y.; Miura,
M. Thioether-Directed peri-Selective C−H Arylation under
Rhodium Catalysis: Synthesis of Arene-Fused Thioxanthenes.
Org. Lett. 2019, 21, 233−236.
Controlled
Highly
para-Selective
Arylation
of
Monosubstituted Simple Arenes with Arylboronic Acids. J. Am.
Chem. Soc. 2017, 139, 1786−1789.
(14) Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. Catalytic
Direct Arylation with Aryl Chlorides, Bromides, and Iodides:
Intramolecular Studies Leading to New Intermolecular
Reactions. J. Am. Chem. Soc. 2006, 128, 581−590.
(15) An example on the regioselective C1/C2-arylation of simple
naphthalene by steric hindrance control was reported by
Sanford, M. S., see: Wagner, A. M.; Hickman, A. J.; Sanford, M. S.
(8) a) Okumura, S.; Tang, S.; Saito, T.; Semba, K.; Sakaki, S.; Nakao,
Y. para-Selective Alkylation of Benzamides and Aromatic
ACS Paragon Plus Environment