10.1002/ejoc.201800482
European Journal of Organic Chemistry
FULL PAPER
fractionally distilled yielding the target fluorocyclobutane as a mixture of
cis- and trans-isomers in a 55:45 ratio (107 g, 91%, b.p. 54-59 °C. 19F
NMR of the product corresponded to the literature data.[39] cis-1,2-
This work was supported by specific university research (MSMT
No. 21-SVV/2018). Computational resources were supplied by
the Ministry of Education, Youth and Sports of the Czech
Republic under the Projects CESNET (Project No. LM2015042)
and CERIT-Scientific Cloud (Project No. LM2015085) provided
within the program Projects of Large Research, Development
and Innovations Infrastructures.
Dichloro-1,2,3,3,4,4-hexafluorocyclobutane,
19F NMR
(282.23 MHz,
2
2
CDCl3): δ -117.9 (dm, JF-F = 218 Hz, 2F, FCF-FCF); -129.9 (dm, JF-F
218 Hz, 2F, FCF-FCF); -137.2 (m, 2F, CFCl-CFCl) ppm. trans-1,2-
Dichloro-1,2,3,3,4,4-hexafluorocyclobutane, (282.23 MHz,
19F NMR
=
2
2
CDCl3): δ -121.8 (dm, JF-F = 213 Hz, 2F, FCF-FCF); -125.7 (dm, JF-F
213 Hz, 2F, FCF-FCF); -127.7 (m, 2F, CFCl-CFCl) ppm.
=
Keywords: fluorocyclobutene • 19F NMR spectroscopy •
computational chemistry • DFT • DLPNO-CCSD
Preparation of hexafluorocyclobut-1-ene (1). The original procedure[40]
was slightly modified. Zinc powder (56.0 g, 0.86 mol), activated by
grinding with few drops of acetic acid and acetic anhydride, was placed
into a 3-necked flask equipped with addition funnel and Vigreux column
topped by low-temperature fraction distillation head, followed by anh.
methanol (50 mL). 1,2-Dichloro-1,2,3,3,4,4-hexafluorocyclobutane was
slowly added to the mixture at a rate enabling gentle reflux of the mixture.
After 6 h, pure target product 1 was collected in the distillate (21.0 g,
76.5%, b.p. 0-2 °C). 19F NMR (282.23 MHz, CDCl3): δ -118.6 (m, 4F,
CF2); -128.0 (m, 2F, CF) ppm.
[1]
[2]
D. O’Hagan, J. Fluorine Chem. 2010, 131, 1071-1081.
sales-revenue-in-2015-who-sold-the-biggest-blockbuster-drugs.
Retrieved 1 April 2017.
[3]
[4]
C. Hogue, Chem. Eng. News 2011, 31-32.
a) M. Ohashi, S. Ogoshi, Catalytic Transformations of Fluorinated
Olefins in Organometallic Fluorine Chemistry (Eds.: T. Braun, R. P.
Hughes), Topics in Organometallic Chemistry 52, Springer, Dordrecht,
2015, pp. 197-216; b) D.L. Orsi, R. A. Altman, Chem. Commun. 2017,
53, 7168-7181.
Preparation of 3,3,4,4-tetrafluorocyclobut-1-ene (3a). General
procedure: LiAlH4 was dissolved at -78 °C in diethyl ether (20 mL). The
solution was slowly cannulated to a cooled flask, charged with diethyl
ether or 1:1 diethyl ether/THF mixture (15 mL) and fluorocyclobutene 1
(3.1. g, 19 mmol). The reaction was stirred at low temperature for 15 min
and then quenched with aq. NH4Cl (10 mL). Aqueous layer was
separated and extracted with diethyl ether (3 × 10 ml). Combined organic
layers were washed with brine (10 mL) and anh. MgSO4. Diethyl ether
was removed by fractional distillation using a rectification column filled
with steel spirals, leaving the target product 3a as a distillation residue.
Run 1 (Table 1): Reaction with 0.5 eq. of LiAlH4 (360 mg, 9.5 mmol) in
diethyl ether, using addition time 5 min at -78 °C, gave a 91% conversion
[5]
[6]
H. Sakaguchi, Y. Uetake, M. Ohashi, T. Niwa, S. Ogoshi, T. Hosoya, J.
Am. Chem. Soc. 2017, 139, 12855−12862.
a) M. C. Leclerc, Serge I. Gorelsky, B. M. Gabidullin, I. Korobkov, R. T.
Baker, Chem. Eur. J. 2016, 22, 8063 – 8067; b) A. J. Arduengo III, J. C.
Calabrese, H. V. Rasika Dias, F. Davidson, J. R. Goerlich, A. Jockisch,
M. Kline, W. J. Marshall, J. W. Runyon, Phosphorus Sulfur 2016, 191,
527-534.
[7]
[8]
W. Xu, H. Sun, Z. Xiong, X. Li, Organometallics 2013, 32, 7122−7132.
a) S. Fustero, A. Simꢀn-Fuentes, P. Barrio, G. Haufe, Chem. Rev. 2015,
115, 871−930; b) S. Imhof, S. Randl, S. Blechert, Chem. Commun.
2001, 1692–1693; c) A. K. Chatterjee, J. P. Morgan, M. Scholl, R. H.
Grubbs, J. Am. Chem. Soc. 2000, 122, 3783-3784.
of starting cyclobutene 1, yielding
a
22:58:5:3:3 mixture of
fluorocycloalkenes 2a, 3a, 3b, 4a and 4b. 1,3,3,4,4-Pentafluorocyclobut-
1-ene (2a), 19F NMR (282.23 MHz, CDCl3):[21] δ -105.3 (m, 1F, CF=CH); -
111.2 (m, 2F, CF2-CF=CH); -117.0 (m, 2F, CF2-CH=CF) ppm. 3,3,4,4-
Tetrafluorocyclobut-1-ene (3a), 19F NMR (282.23 MHz, CDCl3):[21]
δ -109.4 (m, 4F, CF2) ppm. 1,3,4,4-Tetrafluorocyclobut-1-ene (3b),
19F NMR (282.23 MHz, CDCl3):[21] δ -103.4 (m, 1F, CF=CH); -109.9 (dm,
2JF-F = 205 Hz, 1F, FCF-CFH); -118.7 (dm, 2JF-F = 205 Hz, 1F, FCF-CFH);
[9]
a) S. S. Salim, R. K. Bellingham, V. Satcharoen, R. C. D. Brown, Org.
Lett. 2003, 5, 3403-3406; b) V. De Matteis, F. L. van Delft, J. Tiebes, F.
P. J. T. Rutjes, Eur. J. Org. Chem. 2006, 1166–1176.
[10] M. Marhold, A. Buer, H. Hiemstra, J. H. van Maarseveenb, G. Haufe,
Tetrahedron Lett. 2004, 45, 57-60.
[11] D. Guérin, A.-C. Gaumont, I.Dez, M. Mauduit, S. Couve-Bonnaire, X.
Pannecoucke, ACS Catalysis 2014, 4, 2374-2378.
2
-182.0 (dm, JH-F = 58 Hz, 1F, CFH) ppm. 1,4,4-Trifluorocyclobut-1-ene
(4a), 19F NMR (282.23 MHz, CDCl3):[21] δ -105.9 (m, 1F, CF=CH); -112.2
(m, 2F, CF2) ppm. 3,3,4-Trifluorocyclobut-1-ene (4b), 19F NMR
(282.23 MHz, CDCl3): δ -98.3 (dm, 2JF-F = 205 Hz, 1F, FCF-CFH); -113.4
[12] a) M. L. Macnaughtan, M. J. A. Johnson, J. W. Kampf, Organometallics
26, 2007, 780-782; b) T. M. Trnka, M. W. Day, R. H. Grubbs, Angew.
Chem. Int. Ed. 2001, 40, 3441-3444.
2
2
(dm, JF-F = 205 Hz, 1F, FCF-CFH); -176.2 (dm, JH-F = 62 Hz, 1F, CFH)
ppm. Run 2 (Table 1): Reaction with 0.65 eq. of LiAlH4 (470 mg, 12.4
mmol) in diethyl ether, using addition time 5 min at -40 °C, gave a 100%
conversion of starting cyclobutene 1, yielding a 6:82:12 mixture of
fluorocycloalkenes 3a, 4a and 4b. Run 3 (Table 1): Reaction with 1.1 eq.
of LiAlH4 (790 mg, 20.9 mmol) in diethyl ether, using addition time 10 min
at -78 °C, gave a 100% conversion of starting cyclobutene 1, yielding a
94:6 mixture of fluorocycloalkenes 3a and 3b. Run 4 (Table 1): Reaction
with 1.1 eq. of LiAlH4 (790 mg, 20.9 mmol) in a mixture of diethyl ether
and THF, using addition time 15 min at -78 °C, gave a 100% conversion
of starting cyclobutene 1, yielding pure fluorocycloalkene 3a.
[13] Y. Takahira, Y. Morizawa, J. Am. Chem. Soc. 2015, 137, 7031−7034.
[14] M. Rybáčková, J. Hošek, O. Šimůnek, V. Kolaříková, J. Kvíčala,
Beilstein J. Org. Chem. 2015, 11, 2150-2157.
[15] W. J. Feast, M. Gimeno, E. Khosravi, Polymer 2003, 44, 6111-6121..
[16] a) J. Kvíčala, M. Schindler, V. Kelbichová, M. Babuněk, M. Rybáčková,
M. Kvíčalová, J. Cvačka, A. Březinová, J. Fluorine Chem. 2013, 153,
12-25; b) M. Babuněk, O. Šimůnek, J. Hošek, M. Rybáčková, J. Cvačka,
A. Březinová, J. Kvíčala, J. Fluorine Chem. 2014, 161, 66-75; c)
J.Hošek, M. Rybáčková, J. Čejka, J. Cvačka, J. Kvíčala,
Organometallics 2015, 34, 3327-3334; d) P. Lipovská, L. Rathouská, O.
Šimůnek, J. Hošek, V. Kolaříková, M. Rybáčková, J. Cvačka, M.
Svoboda, J. Kvíčala, J. Fluorine Chem. 2016, 191, 14-22; e) J. Hošek,
O. Šimůnek, V. Kolaříková, P. Lipovská, K. Kučnirová, A. Edr, N.
Štěpánková, M. Rybáčková, J. Cvačka, J. Kvíčala, ACS Sustainable
Chem. Eng. 2018, 6, 7026−7034.
Computational details. DFT calculations were performed using
Gaussian 09W program suite[26] or the ORCA computational program.[27]
Vibrational frequencies were calculated for all species to characterize
them as minima.
[17] A. T. Blomquist, E. A. LaLancette, J. Am. Chem. Soc. 1961, 83, 1387-
1391.
ACKNOWLEDGMENTS
This article is protected by copyright. All rights reserved.