Chemistry Letters 2000
1267
Arnold, Synlett, 2000, 296.
dition B. Presumably, once linear 1n·(n – 1)La(III) (n ≥ 2) is
produced, the following intramolecular reaction between La(III)
and freebase porphyrin to yield cyclic porphyrin arrays occurs
in preference to the intermolecular reaction to yield linear por-
phyrin arrays under these reaction conditions.
4
R. Shediac, M. H. B. Gray, H. T. Uyeda, R. C. Johnson, J. T.
Hupp, P. J. Angiolillo, and M. J. Therien, J. Am. Chem. Soc., 122,
7017 (2000) and references cited therein.
5
6
7
K. Sugiura, Y. Fujimoto, and Y. Sakata, Chem. Commun., 2000,
1105.
A. Ikeda, M. Ayabe, S. Shinkai, S. Sakamoto, and K. Yamaguchi,
Org. Lett., 2, 3707 (2000).
a) J. Li, D. Gryko, R. B. Dabke, J. R. Diers, D. F. Bocian, W. G.
Kuhr, and J. S. Lindsey, J. Org. Chem., 65, 7379 (2000). b) A.
Ambroise, R. W. Wagner, P. D. Rao, J. A. Riggs, P. Hascoat, J. R.
Diers, J. Seth, R. K. Lammi, D. F. Bocian, D. Holten, and J. S.
Lindsey, Chem. Mater., 13, 1023 (2001) and references cited therein.
a) W. Buchler, M. K.-Botulinski, J. Löttler, and B. Scharbert,
New. J. Chem., 16, 545 (1992). b) J. W. Buchler and D. K. P. Ng,
“The Porphyrin Handbook,” ed. by K. M. Kadish, K. M. Smith,
and R. Guilard, Academic Press, San Diego (2000), Vol. 3, Chap.
20 and references cited therein.
We characterized cyclic dimer 12·2La(III) and trimer
1
13·3La(III) complexes by UV–vis and H NMR spectroscopies.
The λmax of the Soret band in 12·2La(III) is slightly blue-shifted
compared with that of 1 and the Q band is significantly broad-
ened, which are characteristic of La(III) bis(porphyrinate)s.8,9
The λmax values of 13·3La(III) appear at 424, 518, 560, and 610
8
9
1
nm, which are comparable with those of 12·2La(III). In the H
NMR spectra of 12·2La(III),12 it is confirmed that there is no pyr-
role N–H proton assignable to freebase porphyrin (δ –2.54 ppm)
and no mono-porphyrinated La(III)(acac)X species, whose proton
signals should appear in higher magnetic field. These findings
together with mass spectral evidence support our assertion that
both the dimer and the trimer have the cyclic structures.
M. Ikeda, M. Takeuchi S. Shinkai, F. Tani, and Y. Naruta, Bull.
Chem. Soc. Jpn., 74, 739 (2001).
10 We have tried to synthesize cyclic porphyrin oligomers by the
reaction of 1 with Ce(acac)3, because it is also known that
Ce(acac)3 results in a double decker structure with porphyrins.
The reaction between Ce(acac)3 and 1, however, did not proceed
at all under these reaction conditions. See recent references on Ce
bis(porphyrinate) double decker complexes; a) M Takeuchi, T.
Imada, and S. Shinkai, Angew. Chem. Int. Ed., 37, 2096 (1998). b)
M. Takeuchi, T. Imada, and S. Shinkai, Tetrahedron Lett., 39,
7897 (1998). c) M. Ikeda, M. Takeuchi, A. Sugasaki, A.
Robertson, T. Imada, and S. Shinkai, Supramol. Chem., 12, 321
(2000). d) M. Ikeda, T. Tanida, M. Takeuchi, and S. Shinkai, Org.
Lett., 2, 1803 (2000). e) A. Sugasaki, M. Ikeda, M. Takeuchi, and
S. Shinkai, Angew. Chem. Int. Ed., 39, 3839 (2000). f) K. Tashiro,
K. Konishi, and T. Aida, Angew. Chem., Int. Ed. Engl. 36, 856
(1997). g) K. Tashiro, T. Fujiwara, K. Konishi, and T. Aida,
Chem. Commun., 1998, 1121. h) K. Tashiro, K. Konishi, and T.
Aida, J. Am. Chem. Soc., 122, 7921 (2000).
In conclusion, we have demonstrated a new synthetic strat-
egy for constructing cyclic porphyrin arrays utilizing porphyrin
dimerization with La(III). In this scheme, one can easily obtain
porphyrin polygons, which should show multiple redox states.
Electrochemical studies using these porphyrin oligomers are
now in progress in our research group.
References and Notes
1
a) S. Anderson, H. L. Anderson, and J. K. M. Sanders, Acc. Chem.
Res., 26, 469 (1993) and reference cited therein. b) P. N. Taylor
and H. L. Anderson, J. Am. Chem. Soc., 121, 11538 (1999). c) H.
L. Anderson, Angew. Chem. Int. Ed., 39, 2451 (2000). d) H. L.
Anderson, Chem. Commun., 1999, 2323; e) R. A. Haycock, C. A.
Hunter, D. A. James, U. Michelsen, and L. R. Sutton, Org. Lett.,
2, 2435 (2000). f) U. Michelsen and C. A. Hunter, Angew.
Chem.Int. Ed., 4, 764 (2000). g) A. Osuka and H. Shimidzu,
Angew. Chem., Int. Ed. Engl., 36, 135 (1997). h) H. Shinmori and
A. Osuka, J. Synth. Org. Chem., Jpn., 57, 749 (1999). i) N.
Aratani, A. Osuka, Y. H. Kim, D. H. Jeong, and D. Kim, Angew.
Chem. Int. Ed., 39, 1458 (2000). j) K. Ogawa, and Y. Kobuke,
Angew. Chem., Int. Ed., 39, 4070 (2000). k) A. Nakano, T.
Yamazaki, Y. Nishimura, I. Yamazaki, and A. Osuka, Chem. Eur.
J., 6, 3254 (2000) and references cited therein. l) A. Tsuda and A.
Osuka, Science, 293, 79 (2001).
11 1: Mp >300 °C, MALDI-TOFMS (CHCA) m/z 1709.23 ([M+H]+
=1709.14). 1H NMR (250 MHz, CDCl3, TMS, 25 °C) δ –2.54 (s,
4H), 1.08–1.14 (m, 18H), 1.65–1.68 (m, 12H), 1.96–2.01 (m,
12H), 4.24–4.26 (m, 12H), 7.25–7.28 (m, 12H), 8.01 (d, J = 7.80
Hz, 4H), 8.09–8.12 (m, 12H), 8.23 (d, J = 7.74 Hz, 4H), and
8.85–8.98 (m, 16H).
12 For 12·2La(III): Yield 35%, MALDI-TOFMS (CHCA) m/z
3688.36 ([M+H]+ = 3689.04), 1H NMR (600 MHz, THF-d8, TMS,
25 °C) δ 1.24–1.33 (m, 60H), 1.67–1.73 (m, 24H), 4.26–4.29 (m,
24H), 6.92–6.93 (m, 12H), 7.02–7.05 (m, 4H), 7.21–7.23 (m,
16H), 7.46–7.47 (m, 16H), 8.11–8.32 (m, 32H), and 8.76 (m,
16H). For 13·3La(III): MALDI TOF MS (CHCA) m/z 5532.1 (M+
= 5532.04). NMR spectrum of 13·3La(III) gives serious line-
broadened proton signals, especially for aromatic protons.
2
3
M. G. H. Vicente, L. Jaquinod, and K. M. Smith, Chem.
Commun., 1999, 1771.
a) A. K. Burrell and D. L. Officer, Synlett, 1998, 1297. b) D. P.