10.1002/chem.201703928
Chemistry - A European Journal
COMMUNICATION
a)
5 mol % 1
20 mol % AgOAc
20 mol % Cu(OAc)2•H2O
Gooßen, Chem. Eur. J. 2016, 22, 18654; d) T. Satoh, M. Miura,
Synthesis 2010, 3395.
Ph
Ph
Ph
Ph
Ph
Ph
+
O
[3]
[4]
For recent reviews of decarboxylative coupling reactions using
photoredox catalysts, see: a) Y. Jin, H. Fu, Asian J. Org. Chem. 2017, 6,
368; b) P. Liu, G. Zhang, P. Sun, Org. Biomol. Chem. 2016, 14, 10763.
For selected examples of decarboxylative coupling reactions of
arylcarboxylic acids, see: a) A. G. Myers, D. Tanaka, M. R. Mannion, J.
Am. Chem. Soc. 2002, 124, 11250; b) L. J. Gooßen, G. Deng, L. M.
Levy, Science 2006, 313, 662; c) R. Shang, Y. Fu, Y. Wang, Q. Xu, H.-
Z. Yu, L. Liu, Angew. Chem. Int. Ed. 2009, 48, 9350; Angew. Chem.
2009, 121, 9514; d) C. Wang, I. Piel, F. Glorius, J. Am. Chem. Soc.
2009, 131, 4194; e) P. Hu, M. Zhang, X. Jie, W. Su, Angew. Chem. Int.
Ed. 2012, 51, 227; Angew. Chem. 2012, 124, 231; f) B. Song, T.
Knauber, L. J. Gooßen, Angew. Chem. Int. Ed. 2013, 52, 2954; Angew.
Chem. 2013, 125, 3026.
PhCl, RT or 80 °C, 24 h
under O2
Ph
O
5aa
Ph
3a
(2 equiv)
4aa / <5%
(>95% recovery)
1 (0.005 mmol)
AgOAc (0.02 mmol)
Cu(OAc)2•H2O (0.02 mmol)
O
O
H
CO2H
PhCl, RT or 80 °C, 24 h
under O2
9
2d
(0.12 mmol)
0% (93% recovery, RT)
0% (89% recovery, 80 °C)
CpE
CpE
Rh
b)
CpE
H
2
Rh
OAc
O
Rh
O
–AcOH
–AcOH
AcO
OAc
O
O
A
B
C
D
E
R
R
R
2 Cu(OAc)2
–2 Cu(OAc)
[5]
For selected examples of decarboxylation of arylcarboxylic acids with
directed C–H bond functionalizations, see: a) M. Shimizu, K. Hirano, T.
Satoh, M. Miura, J. Org. Chem. 2009, 74, 3478; b) S. Mochida, K.
Hirano, T. Satoh, M. Miura, Org. Lett. 2010, 12, 5776; c) J. Cornella, M.
Righi, I. Larrosa, Angew. Chem. Int. Ed. 2011, 50, 9429; Angew. Chem.
2011, 123, 9601; d) S. Mochida, K. Hirano, T. Satoh, M. Miura, J. Org.
Chem. 2011, 76, 3024; e) Y. Zhang, H. Zhao, M. Zhang, W. Su, Angew.
Chem. Int. Ed. 2015, 54, 3817; Angew. Chem. 2015, 127, 3888; f) J.
Zhang, R. Shrestha, J. F. Hartwig, P. Zhao, Nat. Chem. 2016, 8, 1144.
K. Ueura, T. Satoh, M. Miura, J. Org. Chem. 2007, 72, 5362.
a) D. A. Loginov, A. O. Belova, A. R. Kudinov, Russ. Chem. Bull. 2014,
63, 983; b) D. A. Loginov, D. V. Muratov, Y. V. Nelyubina, J. Laskova, A.
R. Kudinov, J. Mol. Catal. A: Chem. 2017, 426, 393.
3
CpE
Rh
G
R
Rh CpE
O
R
O
R
O
OH
5
–CO2
R
R
R
R
R
R
R
Rh
R
R
R
R
3
or
R
CpE
[6]
[7]
R
Rh
CpE
Rh
CpE
R
F
4
F'
Scheme 6. a) Mechanistic studies and b) plausible reaction mechanism.
[8]
[9]
a) A. A. Cant, L. Roberts, M. F. Greaney, Chem. Commun. 2010, 46,
8671; b) C. Wang, S. Rakshit, F. Glorius, J. Am. Chem. Soc. 2010, 132,
14006.
In conclusion, we have established that an electron-deficient
CpERhIII complex is capable of catalyzing the decarboxylative
and oxidative [2+2+2] annulation of benzoic acids with alkynes
to produce substituted naphthalenes at room temperature. The
appropriate choice of the additive and the solvent is crucial for
this transformation. This catalyst system allowed use of oxygen
as a terminal oxidant and broadened the substrate scope. In this
catalysis, the electron deficient nature of the CpERhIII catalyst
might account for acceleration of the decarboxylation as well as
the C–H bond cleavage as a result of the strong rhodium-π
interaction. Future works will include further application of the
CpERhIII catalyst to the decarboxylative C–C bond formations.
Although the room temperature decarboxylative coupling reactions of
arylcarboxylic acids was reported, the substrates were limited to 2,6-
dimethoxybenzoic acids and pentafluorobenzoic acid. See: A. Hossian,
S. K. Bhunia, R. Jana, J. Org. Chem. 2016, 81, 2521.
[10] For mechanistic studies of decarboxylation, see: a) S.-L. Zhang, Y. Fu,
R. Shang, Q.-X. Guo, L. Liu, J. Am. Chem. Soc. 2010, 132, 638; b) R.
Shang, Q. Xu, Y.-Y. Jiang, Y. Wang, L. Liu, Org. Lett. 2010, 12, 1000;
c) A. Fromm, C. van Wuellen, D. Hackenberger, L. J. Gooßen, J. Am.
Chem. Soc. 2014, 136, 10007.
[11]
For the C–H bond functionalization catalyzed by the CpERhIII complex,
see: a) Y. Shibata, K. Tanaka, Angew. Chem. Int. Ed. 2011, 50, 10917;
Angew. Chem. 2011, 123, 11109; b) M. Fukui, Y. Hoshino, T. Satoh, M.
Miura, K. Tanaka, Adv. Synth. Catal. 2014, 356, 1638; c) Y. Hoshino, Y.
Shibata, K. Tanaka, Adv. Synth. Catal. 2014, 356, 1577; d) Y.
Takahama, Y. Shibata, K. Tanaka, Chem. Eur. J. 2015, 21, 9053; e) M.
Fukui, Y. Shibata, Y. Hoshino, H. Sugiyama, K. Teraoka, H. Uekusa, K.
Noguchi, K. Tanaka, Chem. Asian J. 2016, 11, 2260; f) E. Kudo, Y.
Shibata, M. Yamazaki, K. Masutomi, Y. Miyauchi, M. Fukui, H.
Sugiyama, H. Uekusa, T. Satoh, M. Miura, K. Tanaka, Chem. Eur. J.
2016, 22, 14190; g) Y. Takahama, Y. Shibata, K. Tanaka, Chem. Lett.
2016, 45, 1177.
Acknowledgements
This work was supported partly by ACT-C (No.
JPMJCR1122YR) from JST (Japan), and Grants-in-Aid for
Scientific Research (No. JP26102004), Research Activity Start-
up (No. 15H06201), and Young Scientists (No. 17K14481) from
JSPS (Japan). We thank Umicore for generous support in
supplying RhCl3•nH2O.
[12] For electronical properties of the CpERhIII complex, see: T. Piou, F.
Romanov-Michailidis, M. Romanova-Michaelides, K. E. Jackson, N.
Semakul, T. D. Taggart, B. S. Newell, C. D. Rithner, R. S. Paton, T.
Rovis, J. Am. Chem. Soc. 2017, 139, 1296.
Keywords: [2+2+2] Annulation • Cyclopentadienyl Complexes •
C–H Functionalization • Decarboxylation • Rhodium
[1]
For recent general reviews of decarboxylative coupling reactions, see:
a) T. Patra, D. Maiti, Chem. Eur. J. 2017, 23, 7382; b) G. J. P. Perry, I.
Larrosa, Eur. J. Org. Chem. 2017, 2017, 3517; c) H. Li, T. Miao, M.
Wang, P. Li, L. Wang, Synlett 2016, 27, 1635; d) W. I. Dzik, P. P.
Lange, L. J. Gooßen, Chem. Sci. 2012, 3, 2671; e) N. Rodriguez, L. J.
Gooßen, Chem. Soc. Rev. 2011, 40, 5030.
[13] For selected examples of the oxidative [4+2] annulation of benzoic
acids with alkynes, see: a) K. Ueura, T. Satoh, M. Miura, Org. Lett.
2007, 9, 1407; b) D. A. Frasco, C. P. Lilly, P. D. Boyle, E. A. Ison, ACS
Catal. 2013, 3, 2421; c) Y. Yu, L. Huang, W. Wu, H. Jiang, Org. Lett.
2014, 16, 2146; d) S. Warratz, C. Kornhaaß, A. Cajaraville, B.
Niepoetter, D. Stalke, L. Ackermann, Angew. Chem. Int. Ed. 2015, 54,
5513; Angew. Chem. 2015, 127, 5604.
[2]
For recent reviews of decarboxylative coupling reactions with directed
C–H bond cleavage, see: a) Y. Wei, P. Hu, M. Zhang, W. Su, Chem.
Rev. 2017, 117, 8864; b) M. Font, J. M. Quibell, G. J. P. Perry, I.
Larrosa, Chem. Commun. 2017, 53, 5584; c) M. Pichette Drapeau, L. J.
[14] See the Supporting Information.
[15] A. K. Dutta, A. Linden, L. Zoppi, K. K. Baldridge, J. S. Siegel, Angew.
Chem. Int. Ed. 2015, 54, 10792; Angew. Chem. 2015, 127, 10942.
This article is protected by copyright. All rights reserved.