Chemistry Letters 2001
965
4
5
6
7
F. Brisse, F. Bélanger-Gariépy, B. Zacharie, Y. Gareau,
and K. Steliou, New J. Chem., 7, 391 (1983).
Y. Cai and B. P. Roberts, Tetrahedron Lett., 42. 763
(2001).
T. Matsumoto, Y. Matsui, Y. Nakaya, and K. Tatsumi,
Chem. Lett., 2001, 60.
The generation of Dmp(Dep)Ge(SH)H was confirmed by
1H NMR (δ 6.03 ppm GeH, CDCl3) and EI-MS [m/z 554
(M+)].
1
8
1a: colorless crystals; H NMR (CDCl3, 500 MHz) δ 0.52
(s, 2H), 1.03 (t, J = 7.6 Hz, 6H), 1.97 (s, 12H), 2.27 (s,
6H), 2.30 (br m, 4H), 6.74 (s, 4H), 6.82 (d, J = 7.6 Hz,
2H), 7.01 (d, J = 7.6 Hz, 2H), 7.14 (t, J = 7.6 Hz, 1H), 7.45
(t, J = 7.6 Hz, 1H). Anal. Calcd for C34H40GeS2: C, 69.76;
H, 6.89; S, 10.95%. Found: C, 69.65; H, 6.94; S, 10.32%.
1
1b: colorless crystals; H NMR (CDCl3, 500 MHz) δ 0.63
(s, 2H), 0.85 (d, J = 6.9 Hz, 6H), 1.01 (d, J = 6.9 Hz, 6H),
1.22 (d, J = 6.9 Hz, 6H), 1.93 (br s, 12H), 2.30 (s, 6H),
2.81 (sept, J = 6.9 Hz, 1H), 3.10 (sept, J = 6.9 Hz, 2H),
6.81 (br s, 2H), 6.83 (s, 4H), 7.01 (br s, J = 7.6 Hz, 2H),
7.42 (t, J = 7.6 Hz, 1H). Anal. Calcd for C39H50GeS2: C,
71.45; H, 7.69; S, 9.78%. Found: C, 71.10; H, 7.90; S,
9.72%.
9
1H NMR of dimesitylgermanedithiol was reported at δ 0.90
ppm (GeSH) in C6D6. See ref 4.
10 The S–H stretching band of (CF3)3GeSH was reported to
shift from 2592 to 1862 cm–1 by deuteration. R. Eujen and
F. E. Laufs, Z. Anorg. Allg. Chem., 561, 82 (1988).
11 D. F. van de Vondel, E. V. van den Berghe, and G. P. van
der Kelen, J. Organomet. Chem., 23, 105 (1970).
12 The data collection was made with a Rigaku-AFC7 diffrac-
tometer equipped with an MSC/ADSC Quantum1 CCD
detector. Crystal data –for 1a: C34H40GeS2, Mr = 585.40,
triclinic, space group P1, a = 8.9817(5), b = 11.966(2), c =
15.694(2) Å, α = 68.505(3), β = 75.288(1), γ = 77.806(1)°,
V = 1504.8(2) Å3, Z = 2, Dcalc = 1.292 g/cm3, T = 193 K,
µ(Mo Kα) = 47.74 cm–1, R = 0.051, Rw = 0.054, GOF =
1.26, 334 variables, 6720 unique reflections [I > 0σ(I)].
bond distances are 2.195(1) and 2.199(1) , which are shortest
Å
among the reported Ge–S single bonds.1,13 The shortening of
the Ge–S bonds by 0.03–0.04 Å on going from 1a to [2(18-c-
6)(H2O)] supports contribution of the resonance form shown in
Scheme 2,14 although the Ge–S distances are considerably
longer than Ge=S distances.15 The K–S distances range from
3.058(2) to 3.230(2) Å, showing that the interactions are weak.
For 2: C46H64GeS2O7K2, Mr = 943.91, triclinic, space
–
group P1, a = 11.5609(7), b = 12.667(1), c = 18.099(2) Å,
α = 101.999(4), β = 102.149(1), γ = 108.640(1)°, V =
2344.4(4) Å3, Z = 2, Dcalc = 1.337 g/cm3, T = 193 K, µ(Mo
Kα) = 47.74 cm–1, R = 0.080, Rw = 0.081, GOF = 1.02, 523
variables, 10066 unique reflections [I > 0σ(I)].
Dedicated to Prof. Hideki Sakurai on the occasion of his
70th birthday.
References and Notes
13 K. M. Baines and W. G. Stibbs, Coord. Chem. Rev., 145,
157 (1995).
1
P. Riviere, M. R.–Baudet, and J. Satgé in “Comprehensive
Organometallic Chemistry II,” ed. by E. W. Abel, F. G. A.
Stone, and G. Wilkinson, Pergamon Press, New York
(1995), Vol. 2, pp137–216, and references cited therein.
J. Albertsen and R. Steudel, J. Organomet. Chem., 424,
153 (1992).
14 A similar shortening of the Si–S bonds was observed for
the silanethiol Ph3SiSH [2.151(1) and 2.150(1) Å] and its
sodium salt NaPh3SiS(H2O)3 [2.079(1) Å]. W.
Wojnowski, K. Peters, E.-M. Peters, and H. G. von
Schnering, Z. Kristallogr. 174, 297 (1986).
2
3
N. Choi, S. Morino, S. Sugi, and W. Ando, Bull. Chem.
Soc. Jpn., 69, 1613 (1996).
15 T. Matsumoto, N. Tokitoh, and R. Okazaki, J. Am. Chem.
Soc., 121, 8811 (1999), and references cited therein.