L
C.-K. Chan et al.
Paper
Synthesis
1596. (f) For C–B bond formation, see: Mkhalid, I. A. I.; Barnard,
J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010,
110, 890. (g) For C–C bond formation, see: Zhao, X.; Zhang, Y.;
Wang, J. Chem. Commun. 2012, 48, 10162. For others, see:
(h) Qiu, D.; Qiu, M.; Ma, R.; Zhang, Y.; Wang, J. Acta Chim. Sinica
2016, 74, 472. (i) Bernardim, B.; Couch, E. D.; Hardman-Baldwin,
A. M.; Burtolosa, A. C. B.; Mattson, A. E. Synthesis 2016, 48, 677.
(2) For the α-oxysulfonylation of carbonyl synthons by the Koser
group, see: (a) Koser, G. F.; Relenyi, A. G.; Kalos, A. N.; Rebrovic,
L.; Wettach, R. H. J. Org. Chem. 1982, 47, 2487. (b) Moriarty, R.
M.; Vaid, R. K.; Koser, G. F. Synlett 1990, 365. (c) Koser, G. F.
Aldrichimica Acta 2001, 34, 89.
(3) For the α-oxysulfonylation of carbonyl synthons by the Wirth
group, see: (a) Altermann, S. M.; Richardson, R. D.; Page, T. K.;
Schmidt, R. K.; Holland, E.; Mohammed, U.; Paradine, S. M.;
French, A. N.; Richter, C.; Bahar, A. M.; Witulski, B.; Wirth, T. Eur.
J. Org. Chem. 2008, 5315. (b) Hirt, U. H.; Schuster, M. F. H.;
French, A. N.; Wiest, O. G.; Wirth, T. Eur. J. Org. Chem. 2001,
1569. (c) Hirt, U. H.; Spingler, B.; Wirth, T. J. Org. Chem. 1998, 63,
7674. (d) Yusubov, M. S.; Wirth, T. Org. Lett. 2005, 7, 519.
(4) For the α-oxysulfonylation of carbonyl synthons by the Togo
group, see: (a) Kikui, H.; Moriyama, K.; Togo, H. Synthesis 2013,
45, 791. (b) Tanaka, A.; Moriyama, K.; Togo, H. Synlett 2011,
1853. (c) Suzuki, Y.; Togo, H. Synlett 2010, 2355. (d) Tanaka, A.;
Togo, H. Synlett 2009, 3360. (e) Ishiwata, Y.; Togo, H. Tetrahe-
dron Lett. 2009, 50, 5354. (f) Kawano, Y.; Togo, H. Tetrahedron
2009, 65, 6251; and references cited therein.
(5) For the α-oxysulfonylation of carbonyl synthons by other
authors, see: (a) Basdevant, B.; Legault, C. Y. J. Org. Chem. 2015,
80, 6897. (b) Zhang, B.; Han, L.; Hu, J.; Yan, J. Tetrahedron Lett.
2014, 55, 5851. (c) Hu, J. T.; Zhu, M.; Xu, Y.; Yan, J. Synthesis
2012, 44, 1226. (d) Mahajan, U. S.; Akamanchi, K. G. Synlett
2008, 937. (e) Kumar, D.; Sundaree, M. S.; Patel, G.; Rao, V. S.;
Varma, R. S. Tetrahedron Lett. 2006, 47, 8239.
(6) (a) Chan, C. K.; Chang, M.-Y. Synlett 2016, 27, 2858; and refer-
ences cited therein. (b) Chan, C.-K.; Wang, H.-S.; Hsu, R.-T.;
Chang, M.-Y. Synthesis 2017, 49; in press; DOI: 10.1055/s-0036-
1589479.
(9) Copper halide mediated α-halogenation. For CuCl2, see:
(a) Castro, C. E.; Gaughan, E. J.; Owsley, D. E. J. Org. Chem. 1965,
30, 587. (b) Shi, X.-X.; Dai, L.-X. J. Org. Chem. 1993, 58, 4596.
(c) For CuBr2, see: King, L. C.; Ostrum, G. K. J. Org. Chem. 1964,
29, 3459. (d) For CuI, see: Zhao, Z.; Zhang, Q.; Liu, L.; Ho, Y.; Li, J.;
Li, J.; Zhu, Q. Org. Lett. 2012, 14, 5362.
(10) For recent examples on Cu(OAc)2-mediated reactions, see:
(a) Lei, S.; Mai, Y.; Yan, C.; Mao, J.; Cao, H. Org. Lett. 2016, 18,
3582. (b) Yu, J.; Zhang-Negrerie, D.; Du, Y. Org. Lett. 2016, 18,
3322. (c) Lee, W.-C. C.; Shen, Y.; Gutierrez, D. A.; Li, J. J. Org. Lett.
2016, 18, 2660. (d) Xu, P.; Wu, Z.; Zhou, N.; Zhu, C. Org. Lett.
2016, 18, 1143. (e) Li, T.; Wang, Z.; Xu, K.; Liu, W.; Zhang, X.;
Mao, W.; Guo, Y.; Ge, X.; Pan, F. Org. Lett. 2016, 18, 1064.
(f) Ouyang, X.-H.; Song, R.-J.; Liu, Y.; Hu, M.; Li, J.-H. Org. Lett.
2015, 17, 6038. (g) Miura, W.; Hirano, K.; Miura, M. Org. Lett.
2015, 17, 4034. (h) Li, W.; Schneider, C. M.; Georg, G. I. Org. Lett.
2015, 17, 3902. (i) Kuppusamy, R.; Gandeepan, P.; Cheng, C.-H.
Org. Lett. 2015, 17, 3846. (j) Liu, R.-R.; Hong, J.-J.; Lu, C.-J.; Xu,
M.; Gao, J.-R.; Jia, Y.-X. Org. Lett. 2015, 17, 3050. (k) Zhang, J.;
Chen, H.; Wang, B.; Liu, Z.; Zhang, Y. Org. Lett. 2015, 17, 2768.
(l) Mao, S.; Gao, Y. R.; Zhu, X. Q.; Guo, D. D.; Wang, Y. Q. Org. Lett.
2015, 17, 1692. (m) Wang, H.-L.; Shang, M.; Sun, S.-Z.; Zhou, Z.-
L.; Laforteza, B. N.; Dai, H.-X.; Yu, J.-Q. Org. Lett. 2015, 17, 1228.
(11) Flynn, C. J.; Elcoate, C. J.; Lawrence, S. E.; Maguire, A. R. J. Am.
Chem. Soc. 2010, 132, 1184.
(12) H2O should come from the MeNO2 solvent. The purity of MeNO2
is 97% and it contains at least 2–3% H2O. In all experiments, all
solvents (DMF, 98%; AcOH, 98%) and copper salts (>99%) were
obtained from commercial sources and used without further
purification.
(13) For selected examples on the synthesis of vicinal tricarbonyl
compounds, see: (a) Wang, Z.-L.; An, X.-L.; Ge, L.-S.; Jin, J.-H.;
Luo, X.; Deng, W.-P. Tetrahedron 2014, 70, 3788. (b) Baranac-
Stojanovic, M.; Markovic, R.; Stojanovic, M. Tetrahedron 2011,
67, 8000. (c) Santos, M. S.; Coelho, F. RSC Adv. 2012, 2, 3237.
(14) Selected examples on carbon–carbon bond cleavage of 1,3-
dicarbonyl synthons. (a) For NaOH/β-ketosulfones, see:
Suryakiran, N.; Srikanth Reddy, T.; Suresh, V.; Lakshman, M.;
Venkateswarlu, Y. Tetrahedron Lett. 2006, 47, 4319. (b) For
AcOH/β-ketosulfones see: Chang, M.-Y.; Chan, C.-K.; Chen, Y.-C.
Heterocycles 2014, 89, 1229. (c) For p-TsOH/β-diketones, see:
Mayo, M. S.; Yu, X.; Zhou, X.; Feng, X.; Yamamoto, Y.; Bao, M.
Org. Lett. 2014, 16, 764. (d) For Cu(NO3)2/β-ketoesters, see:
Steward, K. M.; Johnson, J. S. Org. Lett. 2011, 13, 2426.
(7) For selected examples on the synthesis of α-diazo β-ketosul-
fones, see: (a) Illger, W.; Liedhegener, A.; Regitz, M. Liebigs Ann.
Chem. 1972, 760, 1. (b) Monteiro, H. J. Synth. Commun. 1987, 17,
983. (c) Wurz, R. P.; Lin, W.; Charette, A. B. Tetrahedron Lett.
2003, 44, 8845. (d) Korneev, S.; Richter, C. Synthesis 1995, 1248.
(e) Chiara, J. L.; Suarez, J. R. Adv. Synth. Catal. 2011, 353, 575.
(f) Pramanik, M. M. D.; Rastogi, N. Org. Biomol. Chem. 2015, 13,
11567. (g) Muthyala, M. K.; Choudhary, S.; Kumar, A. J. Org.
Chem. 2012, 77, 8787. (h) Ferdinand, G.; Jeblick, W.; Schank, K.
Liebigs Ann. Chem. 1976, 1713.
(15) Suryakiran, N.; Prabhakar, P.; Srikanth Reddy, T.; Mahesh, C.;
Rajesh, K.; Venkateswarlu, Y. Tetrahedron Lett. 2007, 48, 877.
(16) Reddi, R. N.; Malekar, P. V.; Sudalai, A. Org. Biomol. Chem. 2013,
11, 6477.
(8) CCDC 1500911 (4n), 1510751 (5a), 1510750 (5d), 1519005 (5t),
1500906 (6a), 1500907 (6b) and 1515271 (9) contain the sup-
plementary crystallographic data for this paper. The data can be
obtained free of charge from The Cambridge Crystallographic
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2017, 49, A–L