12202
J. Am. Chem. Soc. 2001, 123, 12202-12206
Palladium-Catalyzed Intramolecular C-O Bond Formation
Shin-itsu Kuwabe, Karen E. Torraca, and Stephen L. Buchwald*
Contribution from the Department of Chemistry, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
ReceiVed August 24, 2001
Abstract: A number of oxygen heterocycles were synthesized using the palladium-catalyzed intramolecular
etherification of aryl halides by employing di-tert-butylphosphinobiaryl ligands. The reaction proceeds under
mild conditions using weak bases such as Cs2CO3 or K3PO4. A variety of functional groups are tolerated in
the reaction, and enantioenriched alcohols can be coupled without erosion of optical purity. The mildness of
the reaction conditions allows for the use of polyfunctionalized substrates. This method was used as the key
step in the synthesis of MKC-242, an antidepressant currently in clinical trials. The synthesis of MKC-242
was achieved in 40% overall yield from commercially available sesamol and acrylonitrile.
Introduction
ol, using 2-aminopyridine as ligand to provide, respectively,
dihydrobenzofuran or chromane.6a These reports, in combina-
tion, had a substrate scope that was limited to the three halo
alcohols described.
Aryl ethers and oxygen heterocycles are common structures
in many pharmaceutically and agriculturally important com-
pounds.1,2 Traditional methods for the preparation of these
compounds include the Williamson ether synthesis,3 direct
nucleophilic substitution reactions,4 and Ullman-type couplings
of alkoxides with aryl halides.5,6,7 Each of these reactions,
however, typically requires either highly reactive aryl halides,
an excess of the alkoxide, or harsh conditions.
A promising transformation used to construct these hetero-
cycles involves the intramolecular Cu-catalyzed C-O bond
formation between aryl halides and alcohols. Zhu has reported
the efficient copper-catalyzed conversion of 2′-chlorophenethyl
alcohol to furnish dihydrobenzofuran.7 Similarly, Fagan and
Hauptman have described the copper-catalyzed cyclization of
2′-bromophenethyl alcohol and 3-(2′-bromophenyl)-propan-1-
The intramolecular8 Pd-catalyzed C-O bond formation is a
potentially attractive means to assemble oxygen heterocycles.
In the first report in this area, we disclosed that p-tol-BINAP
or DPPF could be used as supporting ligands for such C-O
bond forming processes.9 However, the method, in general,
worked well only for tertiary alcohols. Cyclizations of secondary
alcohols proceeded in low to moderate yields (32-66%) because
of competitive formation of the reduced aldehyde B. This arises
because of â-hydride elimination from palladacycle A being
competitive with or faster than reductive elimination to form
the desired product. Hartwig subsequently reported that using
di-tert-butylphosphinopentaphenylcyclopentadienylferrocenyl as
a ligand was effective for the cyclization of substrates bearing
tertiary alcohols, but application of these conditions to primary
and secondary alcohol substrates afforded the cyclized product
in only moderate yields, presumably because of competitive
â-hydride elimination.8h
(1) For recent reports involving 1,4-benzodioxane derivatives, see: (a)
Czompa, A.; Dinya, Z.; Antus, S.; Varga, Z. Arch. Pharm. (Weinheim, Ger.)
2000, 333, 175. (b) Gu, W. X.; Jing, X. B.; Pan, X. F.; Chan, A. S. C.;
Yang, T. K. Tetrahedron Lett. 2000, 41, 6079. (c) Ward, R. S. Nat. Prod.
Rep. 1999, 16, 75. (d) Bolognesi, M. L.; Budriesi, R.; Cavalli, A.; Chiarini,
A.; Gotti, R.; Leonardi, A.; Minarini, A.; Poggesi, E.; Recanatini, M.; Rosini,
M.; Tumiatti, V.; Melchiorre, C. J. Med. Chem. 1999, 42, 4214.
(2) For recent reports involving 1,4-benzoxazine derivatives, see: (a)
Matsumoto, Y.; Uchida, W.; Nakahara, H.; Yanagisawa, I.; Shibanuma,
T.; Nohira, H. Chem. Pharm. Bull. 2000, 48, 428. (b) Kuroita, T.;
Marubayashi, N.; Sano, M.; Kanzaki, K.; Inaba, K.; Kawakita, T. Chem.
Pharm. Bull. 1996, 44, 2051. (c) Largeron, M.; Lockhart, B.; Pfeiffer, B.;
Fleury, M. J. Med. Chem. 1999, 42, 5043. (d) Buon, C.; Chacun-Lefevre,
L.; Rabot, R.; Bouyssou, P.; Coudert, G. Tetrahedron 2000, 56, 605. (e)
Bourlot, A.; Sa´nchez, I.; Dureng, G.; Guillaumet, G.; Massingham, R.;
Monteil, A.; Winslow, E.; Pujol, M. D.; Me´rour, J. J. Med. Chem. 1998,
41, 3142.
(3) For a review, see: Feuer, H.; Hooz, J. In Chemistry of the Ether
Linkage; Patai, S., Ed.; Wiley Interscience: New York, 1967; p 445.
(4) For a review, see: Paradisi, C. In ComprehensiVe Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 4, p
423.
(5) For a review, see: Lindley, J. Tetrahedron 1984, 40, 1433.
(6) (a) Fagan, P. J.; Hauptman, E.; Shapiro, R.; Casalnuovo, A. J. Am.
Chem. Soc. 2000, 122, 5043. (b) Keegstra, M. A.; Peters, T. H. A.;
Brandsma, L. Tetrahedron 1992, 48, 3633. (c) Bates, R. B.; Janda, K. D.
J. Org. Chem. 1982, 47, 4374.
Recent studies in our group have focused on extending the
scope and utility of the intramolecular C-O bond forming
reaction, and we have reported our initial findings as a
Communication.10 Herein, we report in full the results of this
investigation as well as the application of this methodology in
the synthesis of MKC-242, a benzodioxane antidepressant.
Results and Discussion
Initial studies focused on the development of a new ligand
for palladium that would accelerate the desired reductive
(8) For Pd-catalyzed intermolecular C-O bond formation, see: (a) Mann,
G.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 13109. (b) Palucki, M.;
Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 3395. (c) Mann,
G.; Hartwig, J. F. J. Org. Chem. 1997, 62, 5413. (d) Mann, G.; Hartwig, J.
F. Tetrahedron Lett. 1997, 38, 8005. (e) Mann, G.; Incarvito, C.; Rheingold,
A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 3224. (f) Aranyos, A.;
Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J.
Am. Chem. Soc. 1999, 121, 4369. (g) Watanabe, M.; Nishiyama, M.; Koie,
Y. Tetrahedron Lett. 1999, 40, 8837. (h) Shelby, Q.; Kataoka, N.; Mann,
G.; Hartwig, J. J. Am. Chem. Soc. 2000, 122, 10718. (i) Parrish, C. A.;
Buchwald, S. L. J. Org. Chem. 2001, 66, 2498.
(7) (a) Zhu, J.; Price, B. A.; Zhao, S. X.; Skonezny, P. M. Tetrahedron
Lett. 2000, 41, 4011. (b) Aalten, H. L.; van Koten, G.; Grove, D. M.;
Kuilman, T.; Piekstra, O. G.; Hulshof, L. A.; Sheldon, R. A. Tetrahedron
1989, 45, 5556. (c) Bacon, R. G. R.; Rennison, S. C. J. Chem. Soc. C 1969,
312. (d) Castro, C. E.; Havlin, R.; Honwad, V. K.; Malte, A.; Moje, S. J.
Am. Chem. Soc. 1969, 91, 6464.
(9) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1996,
118, 10333.
(10) Torraca, K. E.; Kuwabe, S.; Buchwald, S. L. J. Am. Chem. Soc.
2000, 122, 12907.
10.1021/ja012046d CCC: $20.00 © 2001 American Chemical Society
Published on Web 11/08/2001