quotient reminds us that in fluoride-rich media the effective
oxidation potentials of Ti(II) and Ti(III) approach each other and
that this trend arises not from complexation of Ti(II), but rather
from ligation of Ti(IV), the product from Ti(III).
OD = e3[TiIII] + e2[TiII] (Beer’s law) (h)
e3[Ti]tot
1+ 2(K3,2
)
1/ 2[HF]2
e2(K3,2 )
1/ 2[HF]2[Ti]tot
Rates for the TiIII-quinone step (k2) are seen to diminish
perceptibly with increases of (HF), presumably due to the partial
loss of the more active reducing species, [TiIIIOH]2+ (eqn (5)).
In short, at high concentrations of HF, direct electron transfer
from Ti(II) to quinone is so slow that virtually all loss of oxidant
is triggered instead by reaction with Ti(III). We suspect that
the sluggish action of Ti(II), may reflect, at least in part, an
unusually low Ti(II,III) self-exchange rate. Both TiII (3d2) and
TiIII(3d1) should be subject to minor Jahn–Teller distortions, but
the degree of such distortion and the occupancy of the non-
degenerate orbitals (one short, two long) vs. (two short, one
long) need not match. The two states may have quite different
geometries, and this mismatch would be expected to result in a
higher Franck–Condon barrier to exchange.21 Beyond this, there
is the possibility of reversible donor–acceptor interaction between
the d2 center and the highly conjugated quinone molecule, yielding
a complex which geometrically disfavors internal electron transfer.
Such intervention need not persist when we are dealing with TiIII(a
d1 center), or with a less markedly conjugated semiquinone (QH∑)
transient.
+
(i)
1+ 2(K3,2 )
1/ 2[HF]2
(e3+e2(K 3,2
)
1/ 2[HF]2 )[Ti]tot
OD =
(j)
1+2(K 3,2 )
1/ 2[HF]2
Acknowledgements
We are grateful to Dr Yuriy Tolmachev, Dr Paul Sampson, and
Mr Robert Hoover for helpful discussions and to Mrs Arla Dee
McPherson for technical assistance.
References
1 Part 167.B. B. Dhar, R. Mukherjee and E. S. Gould, Dalton Trans.,
2009, 868.
2 K. Ziegler, E. Holzkamp, H. Breil and H. Martin, Angew. Chem., 1955,
67, 541.
3 (a) Reviews: E. A. Mints, in Encyclopedia of Inorganic Chemistry,
R. B. King, ed. Vol. 8, Wiley, New York, 1994, 4206-4224.; (b) S. B.
Smith and D. W. Stephan, in Comprehensive Coordination Chemistry,
J. A. McCleverty and T. J. Meter, Ed., v. 4, Elsevier, Amsterdam, 2004,
Chapt. 4.2.
4 Reviews: F. Sato and H. Urabe, Titanium and Zirconium in Organic
Synthesis, I. Marek, ed., Wiley, New York, 2002, pp. 281-329.
5 G. S. Forbes and L. P. Hall, J. Am. Chem. Soc., 1924, 46, 385.
6 J. W. Olver and J. W. Ross, Jr., J. Am. Chem. Soc., 1963, 85, 2565.
7 U. Kolle and P. Kolle, Angew. Chem., Int. Ed., 2003, 42, 4540.
8 Z. Yang and E. S. Gould, Dalton Trans., 2005, 1781.
9 R. M. Smith and A. E. Martell, Critical Stability Constants, v. 4,
Plenum, New York, 1971, p. 99.
Appendix
Treatment of absorbance data for Ti(II), Ti(III), Ti(IV) systems
2TiIII + 4HF ꢀ TiII + TiIVF4 + 4H+ (a)
10 S. K. Chandra and E. S. Gould, Inorg. Chem., 1996, 35, 3381.
11 R. Mukherjee, V. Mannivanan and E. S. Gould, Inorg. Chim. Acta,
2007, 360, 3633.
12 B. B. Dhar and E. S. Gould, Dalton Trans., 2007, 1416.
13 Z. Yang and E. S. Gould, Dalton Trans., 2006, 396.
14 R. Mukherjee, Z. Yang and E. S. Gould, Dalton Trans., 2006, 772.
15 B. Saha and D. Stanbury, Inorg. Chem., 2000, 39, 1294.
16 A. H. Martin and E. S. Gould, Inorg. Chem., 1975, 14, 873.
17 L. Ciavatta and A. Pirozzi, Polyhedron, 1983, 2, 769.
18 J. P. Birk, Inorg. Chem., 1975, 14, 1724.
[TiIII] + [TiII] + [TiIV] = [Ti]tot (b)
In these systems, [TiII] = [TiIV]; hence [TiIII] + 2[TiII] = [Ti]tot (c)
For our measurements [H+] is very nearly constant (0.50 M
[Ti(II)]2
CF3SO3H)
(d)
,
K3,2
=
[TI(III)]2[HF]4
Whence [TiII] = (K3,2
)
1/2[TiIII][HF]2 (e)
19 B. A. Barshop, R. F. Wrenn and C. Frieden, Anal. Biochem., 1983, 130,
134.
Substituting (e) into (c):
20 This quotient differs from K3,2 derived from spectral studies under a
much wider range of (HF) and (F-). During the kinetic runs treated
with KINSIM, these parameters are held nearly constant.
21 Note that an unusually low self-exchange rate has been calculated
for the analogous d1, d2 pair,[VIVO(H2O)4]2+, [VIII(OH)2(H2O)3]+. See:
M. C. Ghosh and E. S. Gould, J. Am. Chem. Soc., 1993, 115, 3167.
[TiIII] + 2(K3,2
)
1/2[TiIII][HF]2 = [Ti]tot (f)
[Ti]tot
III
Solving for [TiIII],
(g)
[Ti ]=
1+2(K3,2 )
1/2[HF]2
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 1616–1619 | 1619
©