Page 5 of 7
Journal of the American Chemical Society
ACKNOWLEDGMENT
1
The authors are grateful to the University of California, Los An-
geles for financial support. We are grateful to the NIH-NIGMS
(F31-GM117945 to E.P.), the Foote Family (E.P.), the Swiss Na-
tional Science Foundation for an Early Mobility Postdoctoral
Fellowship (M.G.), the UCLA Cota-Robles Fellowship Program
(E.P.), and the CBI training program (USPHS National Research
Service Award 5T32GM008496 to M.A.M. and A.S.). Dr. J.
Moreno (UCLA) is acknowledged for experimental assistance and
we thank the Nelson laboratory (UCLA) for use of instrumenta-
tion. These studies were supported by shared instrumentation
grants from the NSF (CHE-1048804) and the National Center for
Research Resources (S10RR025631). This work used computa-
tional and storage services associated with the Hoffman2 Shared
Cluster provided by UCLA Institute for Digital Research and
Education’s Research Technology Group.
stereocenters, see: a) Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.;
Lautens, M. J. Am. Chem. Soc. 2005, 127, 15028–15029. b) Webster, R.;
Lautens, M. Org Lett. 2009, 11, 4688–4691.
2
3
4
5
6
7
8
9
8 For the intermolecular trapping of arynes with Schöllkopf reagents (with
later hydrolysis) to generate tertiary stereocenters, see: a) Jones, E. P.;
Jones, P.; Barrett, A. G. M. Org. Lett. 2011, 13, 1012–1015. b) Jones, E.
P.; Jones, P.; White, A. J. P.; Barrett, A. G. M. Beilstein J. Org. Chem.
2011, 7, 1570–1576.
9
β-keto esters are commonly seen in bioactive molecules, so methods to
synthesize functionalized derivatives are valuable. A Reaxys search re-
veals there are 53,683 known β-keto esters with biological activity. Janu-
ary 24, 2018.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
10
Methodologies to generate quaternary stereocenters, especially with
control of absolute stereochemistry, remain highly sought after. For perti-
nent reviews, see: a) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516,
181–191. b) Liu, Y.; Han, S.-J.; Liu, W.-B.; Stoltz, B. M. Acc. Chem.
Res. 2015, 48, 740–751. c) Shockley, S. E.; Holder, J. C.; Stoltz, B. M.
Org. Process Res. Dev. 2015, 19, 974–981. d) Zeng, X.-P.; Cao, Z-Y.;
Wang, Y-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330–7396.
REFERENCES
11
For the α-arylation of β-ketoesters, with concomitant C–C bond frag-
mentation, see: Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127,
5340–5341.
12
1 For reviews regarding benzyne and related reactive intermediates, see: a)
Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701–730. b) Wenk, H.
H.; Winkler, M.; Sander, W. Angew. Chem., Int. Ed. 2003, 42, 502–528. c)
Sanz, R. Org. Prep. Proced. Int. 2008, 40, 215–291. d) Bronner, S. M.;
Goetz, A. E.; Garg, N. K. Synlett 2011, 2599–2604. e) Tadross, P. M.;
Stoltz, B. M. Chem. Rev. 2012, 112, 3550–3557. f) Gampe, C. M.; Car-
reira, E. M. Angew. Chem., Int. Ed. 2012, 51, 3766–3778. g) Bhunia, A.;
Yetra, S. R.; Biju, A. T. Chem. Soc. Rev. 2012, 41, 3140–3152. h) Yo-
shida, H.; Takaki, K. Synlett 2012, 1725–1732. i) Dubrovskiy, A. V.;
Markina, N. A.; Larock, R. C. Org. Biomol. Chem. 2013, 11, 191–218. j)
Wu, C.; Shi, F. Asian J. Org. Chem. 2013, 2, 116–125. k) Hoffmann, R.
W.; Suzuki, K. Angew. Chem., Int. Ed. 2013, 52, 2655–2656. l) Goetz, A.
E.; Garg, N. K. J. Org. Chem. 2014, 79, 846–851. m) Goetz, A. E.; Shah,
T. K.; Garg, N. K. Chem. Commun. 2015, 51, 34–45. n) Yoshida, S.;
Hosoya, T. Chem. Lett. 2015, 44, 1450–1460. o) Bhojgude, Sachin
Suresh; Bhunia, A.; Biju, A. T. Acc. Chem. Res. 2016, 49, 1658–1670.
Enamines derived from β-ketoesters were considered well suited, as
they are stable on neutral alumina and can be purified prior to use.
13
For pioneering studies of racemic enamine arylations, see: a) Kuehne,
M. E. J. Am. Chem. Soc. 1962, 82, 837–847. For the α-arylation of
enamines with arynes to give functionalized achiral enamines, see: b)
Ramtohul, Y. K.; Chartrand, A. Org. Lett. 2007, 9, 1029–1032. c) Li, R.;
Wang, X.; Wei, Z.; Wu, C.; Shi, F. Org. Lett. 2013, 15, 4366–4369.
14
For select previous studies on the enantioselective functionalization of
enamines bearing chiral auxiliaries, see: a) Tomioka, K.; Ando, K.; Take-
masa, Y.; Koga, K. J. Am. Chem. Soc. 1984, 106, 2718–2719. b) Christof-
fers, J.; Mann, A. Chem. Eur. J. 2001, 7, 1014–1027. c) Camara, C.; Jo-
seph, D.; Dumas, F.; d’Angelo, J.; Chiaroni, A. Tetrahedron Lett. 2002,
43, 1445–1448. d) Fujimoto, T.; Endo, K.; Tsuji, H.; Nakamura, M.;
Nakamura, E. J. Am. Chem. Soc. 2008, 130, 4492–4496.
15
A related breakthrough, albeit not using β-ketoesters, is the α-arylation
of oxindoles using Pd catalysis; see: a) Altman, R. A.; Hyde, A. M.;
Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 9613–9620. b)
Taylor, A. M.; Altman, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 2009,
131, 9900–9901. c) Li, P.-F.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2011, 50, 6396–6400.
2
For the quantification of benzyne’s high electrophilicity, see: Fine
Nathel, N. F.; Morrill, L. A.; Mayr, H.; Garg, N. K. J. Am. Chem. Soc.
2016, 138, 10402–10405.
3 For Kobayashi’s generation of arynes from o-silyltriflate precursors, see:
Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211–1214.
16
a) Beringer, F. M.; Forgione, P. S.; Yudis, M. D. Tetrahedron 1960, 8,
4
For the aryne distortion/interaction model, see: a) Cheong, P. H.-Y.;
49–63. b) Ochiai, M.; Kitagawa, Y.; Takayama, N.; Takaoka, Y.; Shiro,
M. J. Am. Chem. Soc. 1999, 121, 9233–9234. c) Oh, C. H.; Kim, J. S.;
Jung, H. H. J. Org. Chem. 1999, 64, 1338–1340.
Paton, R. S.; Bronner, S. M.; Im, G.-Y. J.; Garg, N. K.; Houk, K. N. J.
Am. Chem. Soc. 2010, 132, 1267–1269. b) Im, G.-Y. J., Bronner, S. M.;
Goetz, A. E.; Paton, R. S.; Cheong, P. H.-Y.; Houk, K. N.; Garg, N. K. J.
Am. Chem. Soc. 2010, 132, 17933–17944. c) Goetz, A. E.; Bronner, S. M.;
Cisneros, J. D.; Melamed, J. M.; Paton, R. S.; Houk, K. N.; Garg, N. K.
Angew. Chem., Int. Ed. 2012, 51, 2758–2762. d) Bronner, S. M.; Mackey,
J. L.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2012, 134, 13966–
13969. e) Medina, J. M.; Mackey, J. L.; Garg, N. K.; Houk, K. H. J. Am.
Chem. Soc. 2014, 136, 15798–15805. f) Picazo, E.; Houk, K. N.; Garg, N.
K. Tetrahedron Lett. 2015, 56, 3511–3514.
17 Xie, X.; Chen. Y.; Ma. D. J. Am. Chem. Soc. 2006, 128, 16050–16051..
18
For the Pd-catalyzed α-arylation of malonates, see: Beare, M. A.; Hart-
wig, J. F. J. Org. Chem. 2002, 67, 541–555.
19
By employing the N-deutero derivative of 10 in this transformation, we
observe deuterium incorporation on the ortho position of the aromatic ring
of 12. For details, see the SI.
20
For the synthesis and regioselective trappings of indolynes accessed
from silyltriflate precursors, see references 4a and 4b.
5
21
For select examples of synthetic applications, see: a) Mauger, C. C.;
For reasons not fully understood, the racemic arylation of the indolyne
Mignani, G. A. Org. Proc. Res. Dev. 2004, 8, 1065–1071. b) Lin, J. B.;
Shah, T. K.; Goetz, A. E.; Garg, N. K.; Houk, K. N. J. Am. Chem.
Soc. 2017, 139, 10447–10455. c) Surry, D. S.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2008, 47, 6338–6361. d) Ross, S. P.; Hoye, T. R. Nat.
Chem. 2017, 9, 523–530. e) Corsello, M. A.; Kim, J.; Garg, N. K. Nat.
Chem. 2017, 9, 944–949.
was lower yielding than the corresponding stereoselective arylation reac-
tion.
22
For the synthesis and regioselective trappings of these strained cyclic
alkynes, see: a) McMahon, T. C.; Medina, J. M.; Yang, Y.-F.; Simmons,
B. J.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2015, 137, 4082–4085.
b) Shah, T. K.; Medina, J. M.; Garg, N. K. J. Am. Chem. Soc. 2016, 138,
4948–4954.
6
Intramolecular aryne trappings, although less common, have been used
23
to construct complex natural product frameworks. See references 1, 5, and
the following recent examples: a) Goetz, A. E.; Silberstein, A. L.;
Corsello, M. A. J. Am. Chem. Soc. 2014, 136, 3036–3039. b) Neog, K.;
Borah, A.; Gogoi, P. J. Org. Chem. 2016, 81, 11971−11977. c) Corsello,
M. A.; Kim, J. Garg, N. K. Nat. Chem. 2017, 9, 944–949. d) Ross, S.P.;
Hoye, T.R. Nat. Chem. 2017, 9, 523–530. e) Neumeyer, M.; Kopp, J.;
Brückner, R. Eur. J. Org. Chem. 2017, 2883–2915.
Other strategies for this transformation were pursued, such as the use of
Cu/BOX as a catalyst for the arylation reaction. Additionally, many other
classes of amines, such as amino acids and amino acid derivatives were
examined in the arylation reaction, but led to either poor yields and/or
poor stereochemical outcomes.
24
For a review on Ellman’s chiral sulfinamides, see: Ellman, J. A.; Ow-
ens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984. Procedure followed
to synthesize chiral anthracenyl amines: Rodriguez–Hernandez, R.; Her-
nandez–Castillo, T.; Huizar–Trejo, K. E. Synthesis 2011, 17, 2817–2821.
7
For the intermolecular trapping of benzyne with dienes bearing the Op-
polzer sultam (with later cleavage of the auxiliary) to generate tertiary
ACS Paragon Plus Environment