R. Paira et al. / Tetrahedron Letters 52 (2011) 1653–1657
1657
17. Brana, M. F.; Cacho, M.; Gradillas, A.; de Pascual-Teresa, B.; Ramos, A. Curr.
Pharm. Des. 2001, 7, 1745–1780.
Supplementary data
18. Galietta, L. J. V.; Springsteel, M. F.; Eda, M.; Niedzinski, E. J.; By, K.; Haddadin,
M. J.; Kurth, M. J.; Nantz, M. H.; Verkman, A. S. J. Biol. Chem. 2001, 276, 19723–
19728.
19. Martínez, V.; Burgos, C.; Alvarez-Builla, J.; Fernández, G.; Domingo, A.; García-
Nieto, R.; Gago, F.; Manzanares, I.; Cuevas, C.; Vaquero, J. J. J. Med. Chem. 2004,
47, 1136–1148.
20. (a) Howarth, J.; Hanlon, K. Tetrahedron Lett. 2001, 42, 751–754; (b) Howarth, J.;
Hanlon, K. Bioorg. Med. Chem. Lett. 2003, 13, 2017–2020.
21. (a) Naskar, S.; Paira, P.; Paira, R.; Mondal, S.; Maity, A.; Hazra, A.; Sahu, K. B.;
Saha, P.; Banerjee, S.; Luger, P.; Weber, M.; Mondal, N. B. Tetrahedron 2010, 66,
5196–5203; (b) Saha, P.; Naskar, S.; Paira, P.; Hazra, A.; Sahu, K. B.; Paira, R.;
Banerjee, S.; Mondal, N. B. Green Chem. 2009, 11, 931–934.
Supplementary data associated with this article can be found, in
References and notes
1. Barluenga, S.; Simonsen, K. B.; Littlefield, E. S.; Ayida, B. K.; Vourloumis, D.;
Winters, G. C.; Takahashi, M.; Shandrick, S.; Zhao, Q.; Han, Q.; Hermann, T.
Bioorg. Med. Chem. Lett. 2004, 14, 713–718.
2. Li, H.; Marcelo, F.; Bello, C.; Vogel, P.; Butters, T. D.; Rauter, A. P.; Zhang, Y.;
Sollogoub, M.; Blériot, Y. Bioorg. Med. Chem. 2009, 17, 5598–5604.
3. (a) Piek, T.; van Weeren-Kramer, J.; van Wilgenburg, H.; Zeegers, A.; Leeuwin, R.
S. Neurosci. Res. Commun. 2001, 28, 85–93; (b) Nakamoto, H.; Ogasawara, Y.;
Kajiya, F. Hypertens. Res. 2008, 31, 315–324; (c) Bailey, A. M.; Paulsen, I. T.;
Piddock, L. V. J. Antimicrob. Agents Chemother. 2008, 52, 3604–3611.
4. Bedürftig, S.; Wünsch, B. Eur. J. Med. Chem. 2009, 44, 519–525.
5. Sikazwe, D. M. N.; Nkansah, N.; Altundas, T. R.; Zhu, X. Y.; Roth, B. L.; Setola, V.;
Ablordeppey, S. Y. Bioorg. Med. Chem. 2009, 17, 1716–1723.
6. Shankaran, K.; Donnelly, K. L.; Shah, S. K.; Caldwell, C. G.; Chen, P.; Hagmann,
W. K.; MacCoss, M.; Humes, J. L.; Pacholok, S. G.; Kelly, T. M.; Grant, S. K.; Wong,
K. K. Bioorg. Med. Chem. Lett. 2004, 14, 5907–5911.
7. Koshio, H.; Hirayama, F.; Ishihara, T.; Taniuchi, Y.; Sato, K.; Sakai-Moritani, Y.;
Kaku, S.; Kawasaki, T.; Matsumoto, Y.; Sakamoto, S.; Tsukamoto, S. Bioorg. Med.
Chem. 2004, 12, 2179–2191.
22. (a) Bram, G.; Loupy, A.; Villemin, D. In Solid Supports and Catalysts in Organic
Synthesis; Smith, K., Ed.; Ellis Horwood: Prentice Hall, Chichester, 1992; p 302.
Ch. 12; (b) Varma, R. S. Green Chem. 1999, 1, 43–55.
23. (a) Sharma, V.; Crankshaw, C. L.; Piwnica-Worms, D. J. Med. Chem. 1996, 39,
3483–3490; (b) Tomizawa, M.; Zhang, N.; Durkin, K. A.; Olmstead, M. M.;
Casida, J. E. Biochemistry 2003, 42, 7819–7827; (c) Oppong, K. A.; Ellis, C. D.;
Laufersweiler, M. C.; O’Neil, S. V.; Wang, Y.; Soper, D. L.; Baize, M. W.; Wos, J. A.;
De, B.; Bosch, G. K.; Fancher, A. N.; Lu, W.; Suchanek, M. K.; Wang, R. L.;
Demuth, T. P., Jr. Bioorg. Med. Chem. Lett. 2005, 15, 4291–4294; (d) Audouze, K.;
Nielsen, E. O.; Olsen, G. M.; Ahring, P.; Joergensen, T. D.; Peters, D.; Liljefors, T.;
Balle, T. J. Med. Chem. 2006, 49, 3159–3171.
24. Frampton, R.; Johnson, C. D.; Katritzky, A. R. Justus Liebigs Ann. Chem. 1971, 749,
12.
25. Elderfield, R. C.; Rubin, L. E. J. Am. Chem. Soc. 1953, 75, 2963–2970.
26. General reaction procedure: 3.3 mmol 2-aminopyridine derivatives (1a, 1b) or
8-aminoquinoline (4) and 6 mmol dibromoalkanes or benzylic dibromides
8. Orvieto, F.; Branca, D.; Giomini, C.; Jones, P.; Koch, U.; Ontoria, J. M.; Palumbi,
M. C.; Rowley, M.; Toniatti, C.; Muraglia, E. Bioorg. Med. Chem. Lett. 2009, 19,
4196–4200.
9. Pikul, S.; Dunham, K. M.; Almstead, N. G.; De, B.; Natchus, M. G.; Taiwo, Y. O.;
Williams, L. E.; Hynd, B. A.; Hsieh, L. C.; Janusz, M. J.; Gu, F.; Mieling, G. E. Bioorg.
Med. Chem. Lett. 2001, 11, 1009–1013.
(2a–e) were placed in
a round bottomed flask (25 ml) and dissolved in
minimum amount of chloroform. Basic alumina (0.4 g) was then added to the
solution and the organic solvent was then evaporated to dryness under
reduced pressure. After fitting the flask with
a septum the mixture was
10. (a) Cox, C. D.; Breslin, M. J.; Whitman, D. B.; Schreier, J. D.; McGaughey, G. B.;
Bogusky, M. J.; Roecker, A. J.; Mercer, S. P.; Bednar, R. A.; Lemaire, W.; Bruno, J.
G.; Reiss, D. R.; Harrell, C. M.; Murphy, K. L.; Garson, S. L.; Doran, S. M.;
Prueksaritanont, T.; Anderson, W. B.; Tang, C.; Roller, S.; Cabalu, T. D.; Cui, D.;
Hartman, G. D.; Young, S. D.; Koblan, K. S.; Winrow, C. J.; Renger, J. J.; Coleman,
P. J. J. Med. Chem. 2010, 53, 5320–5332; (b) Cole, A. G.; Stroke, I. L.; Brescia, M.
R.; Simhadri, S.; Zhang, J. J.; Hussain, Z.; Snider, M.; Haskell, C.; Ribeiro, S.;
Appell, K. C.; Henderson, I.; Webb, M. L. Bioorg. Med. Chem. Lett. 2006, 16, 200–
203; (c) Ly, K. S.; Letavic, M. A.; Keith, J. M.; Miller, J. M.; Stocking, E. M.;
Barbier, A. J.; Bonaventure, P.; Lord, B.; Jiang, X.; Boggs, J. D.; Dvorak, L.; Miller,
K. L.; Nepomuceno, D.; Wilson, S. J.; Carruthers, N. I. Bioorg. Med. Chem. Lett.
2008, 18, 39–43.
subjected to irradiation in a microwave reactor (CEM, Discover, USA) at 90 °C
(180 W) for appropriate amount of time (as monitored by TLC). After
completion of the reaction the reaction mixture was cooled and methanol
was added to it and the slurry was stirred at room temperature for 10 min. The
mixture was then vacuum filtered through a sintered glass funnel. The filtrate
was then evaporated to dryness under reduced pressure and the residue was
purified by flash chromatography to isolate the product. In the recycling
experiment the residue obtained after vacuum filtration of the reaction
mixture was washed with alkaline water and acetone (2–3 times) and
subjected to calcination at 150 °C.
27. (a) Spectral data for 3a: Brown solid. 92% yield; mp 236–238 °C; Rf (30% ethyl
acetate–methanol) 0.35; IR (KBr,
m ;
max): 1290, 1438, 3533 cmÀ1 1H NMR
11. Gu, S. J.; Lee, J. K.; Pae, A. N.; Chung, H. J.; Rhim, H.; Han, S. Y.; Min, S. J.; Cho, Y.
S. Bioorg. Med. Chem. Lett. 2010, 20, 2705–2708.
(300 MHz, DMSO-d6): d 1.90 (2H, m), 2.08 (2H, m), 3.57 (2H, m), 4.50 (2H, m),
6.94 (1H, m), 7.05 (1H, m), 7.87 (1H, m), 8.07 (1H, m); 13CNMR (75 MHz.,
DMSO-d6): d 24.3 (CH2), 24.6 (CH2), 43.0 (CH2), 55.9 (CH2), 113.9 (CH), 117.2
(CH), 141.4 (CH), 141.9 (CH), 156.6 (C); HRMS (ESI) m/z calcd for C9H13N2:
[MÀBr]+ 149.1073; found: 149.1065. (b) Spectral data for 5a: Brown oil. 88%
12. (a) Cheng, D.; Croft, L.; Abdi, M.; Lightfoot, A.; Gallagher, T. Org. Lett. 2007, 9,
5175–5178; (b) Mandereau, J.; Xuong, E. N. T.; Reynaud, P. Eur. J. Med. Chem.
1974, 9, 344; (c) Zajac, M. A. J. Org. Chem. 2008, 73, 6899–6901.
13. Cox, O.; Jackson, H.; Vargas, V. A.; Baez, A.; Colon, J. I.; Gonzalez, B. C.; Leon, M.
D. J. Med. Chem. 1982, 25, 1378–1381.
14. Rosa, J. C.; Galanakis, D.; Ganellin, C. R.; Dunn, P. M.; Jenkinson, D. H. J. Med.
Chem. 1998, 41, 2–5.
15. Martín, R. S.; Campos, J. M.; García, A. C.; López, O. C.; Coronel, M. B.; González,
A. R.; Gallo, M. A.; Lacal, J. C.; Espinosa, A. J. Med. Chem. 2005, 48, 3354–3363.
16. Molina, A.; Vaquero, J. J.; Navio, J. L. G.; Builla, J. A.; Teresa, B. d. P.; Gago, F.;
Rodrigo, M. M.; Ballesteros, M. J. Org. Chem. 1996, 61, 5587–5599.
yield; Rf (30% ethyl acetate–methanol) 0.35; IR (KBr,
mmax): 1431, 1500,
3461 cmÀ1 1H NMR (600 MHz., D2O): d 3.78 (2H, m), 4.96 (2H, m), 7.32 (1H,
;
m), 7.52 (1H, m), 7.67 (1H, m), 7.89 (1H, m), 8.89 (2H, m); 13C NMR (150 MHz.,
DMSO-d6): d 38.2, (CH2), 55.4 (CH2), 116.3 (CH), 117.6 (CH), 121.0 (CH), 126.8
(C), 130.4 (C), 130.5 (CH), 138.3 (C), 145.2 (CH), 146.5 (CH) ; HRMS (ESI) m/z
calcd for C11H11N2: [MÀBr]+ 171.0917; found: 171.0931.