4
Tetrahedron
Scheme 5. A plausible mechanism for the conversion of dibutyltin diacylates 2 to 2,4-disubstituted oxazoles 4.
Conclusions
In this study, we demonstrated that reaction of Bu2Sn[OC(O)R]2 with mono-substituted acetylenes/TMSN3 furnishes a range of 2,4-
disubstituted oxazoles in moderate to excellent yields.15 Bu2Sn[OC(O)R]2 can be readily prepared from various carboxylic acids, which
have not been used as substrates in the synthesis of 2,4-disubstituted oxazoles thus far. Dimethyl amino groups as well as N-Boc-L-
protected proline remain intact. In addition, the present method was successfully applied for the assembly of 2,4-dialkyloxazoles.
Therefore, this methodology is general and applicable to the synthesis of a broad range of 2,4-disubstituted oxazole derivatives, which
can be assessed for biological activity, and used as starting points for the development of biologically active molecules. The further
investigation for the mechanism and applications are in progress in our laboratory.
Acknowledgments
We would like to thank Professor Emeritus T. Shioiri at Nagoya City University for providing encouragement. We thank Ms. M.
Yoshii, Ms. H. Kusuki, and Ms. M. Satake at our lab for their technical supports.
Supplementary Material
Supplementary data to this article can be found online at ----------------------.
References and notes
1.
For recent reviews on oxazoles, see: (a) A. Khartulyari; M.E. Maier, ‘Science of Synthesis Knowledge Updates; K. Ishihara; D.J. Procter; E.
Schaumann, Ed; Thieme:Stuttgart, 2010, Vol. 3, pp. 57_120.
(b) A.M. Azman, R.J. Mullins 'Oxazoles, Benzoxazoles, and Isoxazoles, In Heterocyclic Chemistry in Drug Discovery;' J.J. Li, Ed; Wiely; Hoboken,
2013, pp. 231_281
(c) J. Revuelta, F. Machetti, and S. Cicchi 'Five-Membered Heterocycles: 1, 3-Azoles, In Modern Heterocyclic Chemistry' J. Alvarez-Builla, J. J.
Vaquero, J. Barluenga, Ed. Wiley-VCH; Weinheim, 2011; Vol. 2. pp. 809_923.
2.
For recent reviews on biological activities of oxazoles, see: (a) S. Kakkar, B. Narasimhan, BMC Chemistry 13 (2019) 16.
(b) H.-Z. Zhang, Z.-L. Zhao, C.-H. Zhou, Eur. J. Med. Chem. 144 (2018) 444_492.
3.
4.
R.S. Roy, A.M. Gehring, J.C. Milne, P.J. Belshaw, C.T. Walsh, Nat. Prod. Rep. 16 (1999) 249_263
(a) F. Yokokawa, Y. Hamada, T. Shioiri, Synlett (1992) 153_155.
(b) D. Hernández, G. Vilar, E. Riego, L.M. Cañedo, C. Cuevas, F. Alberico, M. Álvarez, Org. Lett. 9 (2007) 809_811.
T. Morwick, M. Hrapchak, M. DeTuri, S. Campbell, Org. Lett. 4 (2002) 2665_2668.
5.
6.
(a) G.L. Young, S.A. Smith, R.J. K. Taylor, Tetrahedron Lett. 45 (2004) 3797_3801.
(b) A.B. Smith III, K. P. Minbiole, S. Freeze, Synlett (2001) 1739_1742.
(c) S. A. Hermitage, K.S. Cardwell, T. Chapman, J. W. B. Cooke, R. Newton, Org. Process Res. Dev. 5 (2001) 37_44.
(d) Z. Zhao, G. R. Scarlato, R. W. Armstrong, Tetrahedron Lett. 32 (1991) 1609_1612.
(e) N.A. Strotman, H.R. Chobanian, J. He, Y. Guo, P.G. Dormer, C.M. Jones, J.E. Steves, J. Org. Chem. 75 (2010) 1733_1739.
(a) R.D. Connell, M. Tebbe, P. Helquist, Tetrahedron Lett. 32 (1991) 17_20.
7.
(b) M.R. Reddy, G.N. Reddy, U. Mehmood, I.A. Hussein, S.U. Rahman, K. Harrabi, B.V.S. Reddy, Synthesis 47 (2015) 3315_3320.
Z. Cao, H. Lv, Y. Liu, Z. Nie, H. Liu, T. Yang, W. Luo, Q. Liu, C. Guo, Adv. Synth. Catal. 361 (2019) 1632_1640.
For a recent review of DEPC, see: (a) S. Harusawa, T. Shioiri, Tetrahedron 72 (2016) 8125_8200.
(b) S. Harusawa, Chem. Pharm. Bull. 68 (2020) 1_33.
8.
9.
10. H. Yoneyama, M. Numata, K. Uemura, Y. Usami, S. Harusawa, J. Org. Chem. 82 (2017) 5538_5556.
11. (a) H. Yoneyama, K. Uemura, Y. Usami, S. Harusawa, Tetrahedron 73 (2017) 6109_6117.
(b) H. Yoneyama, K. Uemura, Y. Usami, S. Harusawa, Tetrahedron 74 (2018) 2143_2150.
12. For a recent review of generation of alkylidene carbenes from CPs, see: H, Yoneyama, S. Harusawa, Heterocycles 96 (2018) 2037_2078.
13. H. Yoneyama, N. Oka, Y. Usami, S. Harusawa, Tetrahedron Lett. 61 (2020) 151517.
14. S. Abbas, M. Hussain, S. Ali, M. Parvez, A. Raza, A. Haider, J. Iqbal, J. Organomet. Chem. 724 (2013) 255_261.
15. The present method did not give 2,4,5-trisubstituted oxazoles from 1,2-disubstituted acetylenes.
16. (a) S. Nordhoff, S. Bulat, S. Cerezo-Gálvez, O. Hill, B. Hoffmann-Enger, M. López-Canet, C. Rosenbaum, C. Rummey, M. Thiemann, V. G.
Matassa, P. J. Edwards, A. Feurer, Bioorg. Med. Chem. Lett. 19 (2009) 6340_6345.
(b) P.F. Carneiro, B. Gutmann, R.O.M.A. de Souza, C.O. Kappe, ACS Sustainable Chem. Eng. 3 (2015) 3445_3453.
17. G.R. Sullivan, J.A. Dale, H. S. Mosher, J. Org. Chem. 38 (1973) 2143_2147.
18. (a) S. J. Wittenberger, B. G. Donner, J. Org. Chem. 58 (1993) 4139_4141.
(b) D. Cantillo, B. Gutmann, and C. O. Kappe, J. Am. Chem. Soc. 133 (2011) 4465_4475.
19. (a) Addition of radical inhibitors TEMPO or HQ remarkedly decreased the formation of oxazole 4, suggesting the generation of radical species in the
reaction mechanism [See Supplementary Data]. Meanwhile, in case of 4-pentenoic acid 1u, which was likely to undergo radical cyclization, the
regular oxazole 4u (78%) bearing a vinyl group was obtained, as shown in Table 3..