LETTER
Synthesis of -Lactams
1729
1993, 36, 2. (c) Marcotte, E. R.; Chugh, A.; Mishra, R. K.;
Johnson, R. L. Peptides 1998, 19, 403.
of 15 with benzylamine, the aforementioned -attack
products observed from the reaction of amino acid esters
18 and 19 with 15 could not be separated from the major
products 20 and 22 by column chromatography.16 None-
theless, treatment of the crude mixtures with trifluoroace-
tic acid (TFA) to cleave the tert-butyl ester, followed by
their transformation to the corresponding HCl salts and
cyclisation under the agency of EDC, gave the -lactams
24 and 25 which could be isolated in a pure form and in
good yield.17
(4) For further examples, see: (a) Robl, J. A.; Cimarusti, M. P.;
Simpkins, L. M.; Weller, H. N.; Pan, Y. Y.; Malley, M.;
DiMarco, J. D. J. Am. Chem. Soc. 1994, 116, 2348.
(b) Piscopio, A. D.; Miller, J. F.; Koch, K. Tetrahedron Lett.
1998, 39, 2667.
(5) (a) Mikami, Y.; Suzuki, T. Agric. Biol. Chem. 1983, 47,
2693. (b) Friis, P.; Olsen, C. E.; Møller, B. L. J. Biol. Chem.
1991, 266, 13329; and references cited therein.
(6) Krumme, D.; Tschesche, H. Tetrahedron 1999, 55, 3007.
(7) All new compounds were fully characterised by 1H and 13
C
Although it is possible to deprotect primary nitrobenzene-
sulfonamides,12 the reaction conditions required are po-
tentially detrimental to the integrity of the lactam ring.18
However, the oNs protecting group can be activated for
conventional, mild deprotection by conversion of the pri-
mary sulfonamide to the corresponding urethane protect-
ed nitrobenzenesulfonylimide.12 In order to confirm this,
-lactam 24 was reacted with benzyl chloroformate19 to
give 26. Treatment of 26 with thiophenol (5 equivalents)
in the presence of DIPEA (4 equivalents),20 gave the ben-
zyloxy carbonyl protected Freidinger -lactam 27 in ex-
cellent yield. Deprotection of 27 by palladium assisted
hydrogenation in the presence of acetic acid (1.5 equiva-
lents) afforded 28 in quantitative yield.
NMR spectroscopy as well as mass spectrometry. Data for
selected examples is as follows. (S)-1-(2-Nitro-
benzenesulfonyl)-aziridine-2-carboxylic Acid tert-Butyl
Ester(15): 1H NMR (200 MHz, CDCl3): 8.30–8.25 (m, 1
H, 1
Harom oNs), 7.81–7.74 (m, 3 H, 1 Harom oNs), 3.52
(dd, 1 H, H2, J2,3 = 7.3 Hz, J2.3’ = 4.4 Hz), 3.02 (d, 1 H, H3),
2.72 (d, 1 H, H3’), 1.49 (s, 9 H, CH3 t-Bu); 13C NMR (50
MHz, CDCl3): 164.8 (C1), 147.8 (C-NO2), 134.6, 132.0,
130.6, 124.1 (CHarom oNs), 82.4 (Cq t-Bu), 38.0 (C2), 33.1
(C3), 27.1 (CH3 t-Bu); MS (ESI): m/z (%) = 351.0 [M + Na]+.
(S)-3-Benzylamino-2-(2-nitro-benzenesulfonylamino)-
propionic Acid tert-Butyl Ester(16): 1H NMR (200 MHz,
CDCl3): 8.11–8.08 (m, 1 H, 1 Harom oNs), 7.94–7.90 (m,
1 H, 1
Harom oNs), 7.73–7.68 (m, 2 H, 1 Harom oNs), 7.30
(m, 5 H, Harom Bn), 6.35 (bs, 1 H, NH-oNs), 4.19 (t, 1 H, H2,
J2,3 = 4.8 Hz), 3.82 (AB, 2 H, CH2 Bn), 2.99 (d, 2 H, H3),
1.25 (CH3 t-Bu); 13C NMR (50 MHz, CDCl3): 170.9 (C1),
133.5, 132.8, 130.4 (3 CHarom oNs), 128.4, 128.0, 127.1
(CHarom Bn), 126.5 (Cq Bn), 125.5 (1 CHarom oNs), 82.7 (Cq
t-Bu), 57.0 (C2), 53.1, 50.7 (C3 and CH2 Bn), 27.6 (CH3 t-
Bu); MS (ESI): m/z (%) = 436.2 [M + H]+. (R)-2-
In summary, the Mitsunobu condensation of amino acids
onto the side chain of serine to form dipeptide isosteres of
type 2 could only be realised with glycine derivatives 4
and 5. However, further examples were obtained by ring
opening serine-derived aziridine 15 with -amino acid es-
ters 18 and 19. Compounds of type 2 made in either way
were readily cyclised to form the target Freidinger -lac-
tams (1, n = 1) in good overall yield. Furthermore, the
ability to fully deprotect these compounds was demon-
strated by the conversion of 24 to 28 in excellent yield.
The efficient and facile synthesis of aziridine 15 in con-
junction with its regioselective and high yielding ring
opening with amino acid esters represents an attractive
route to the synthesis of both target compounds 1 (n = 1)
and 2.
Benzylamino-3-(2-nitro-benzenesulfonylamino)-
propionic Acid tert-Butyl Ester(17): 1H NMR (300 MHz,
CDCl3): 8.16–8.08 (m, 1 H, 1 Harom oNs), 7.92–7.83 (m,
1 H, 1 Harom oNs), 7.78–7.70 (m, 2 H, 1 Harom oNs),
7.35–7.23 (m, 5 H, Harom Bn), 6.12 (bs, 1 H, NH-oNs), 3.70
(AB, 2 H, CH2 Bn), 3.39–3.27 (m, 2 H, H2 and 1 H3), 3.13–
3.07 (m, 1 H, 1 H3), 1.49 (CH3 t-Bu); 13C NMR (75 MHz,
CDCl3): 171.4 (C1), 148.1 (C-NO2), 139.0 (Cq Bn), 135.1,
132.7, 131.0 (3 CHarom oNs), 128.4, 128.2, 127.3 (CHarom
Bn), 126.5 (Cq Bn), 125.3 (1 CHarom oNs), 82.7 (Cq t-Bu),
59.9 (C2), 52.0 (CH2 Bn), 45.0 (C3), 28.0 (CH3 t-Bu);); MS
(ESI): m/z (%) = 436.2 [M + H]+. (S)-3-((S)-1-
Methoxycarbonyl-2-phenyl-ethylamino)-2-(2-
nitrobenzenesulfonylamino)-propionic Acid tert-Butyl
Ester(22): 1H NMR (300 MHz, CDCl3): 8.08–8.03 (m, 1
H, 1 Harom oNs), 7.94–7.90 (m, 1 H, 1 Harom oNs), 7.75–
Acknowledgement
This work was financially supported by Unilever. The authors
would like to thank Fons Lefeber and Kees Erkelens for recording
NMR spectra, Hans van den Elst for performing the mass spectro-
mic analyses and Nico Meeuwenoord for conducting HPLC analy-
ses.
7.67 (m, 2 H, 1
Harom oNs), 7.31–7.13 (m, 5 H, Harom Ph),
6.46 (bd, 1 H, NH oNs, JNH,2 = 8.7 Hz), 4.12 (m, 1 H, H2),
3.66 (s, 3 H, OMe), 3.46 (m, 1 H, H1’), 3.12 (dd, 1 H, H3a,
J
3a,3b = 12.3 Hz, J3a,2 = 4.4 Hz), 2.92–2.74 (m, 2 H, H2’), 2.72
(dd, 1 H, H3b, J3b,2 = 4.5 Hz), 1.22 (s, 9 H, CH3 t-Bu); 13
C
NMR (75 MHz, CDCl3): 174.2, 168.7 (C1, COOMe), 147.6
(C-NO2), 136.6 (Cq, Ph), 134.5 (C-SO2), 133.4, 132.7, 130.4
(3 CHarom oNs), 129.1, 128.4, 126.7 (CHarom Ph), 125.4
(1 CHarom oNs), 82.6 (Cq, t-Bu), 62.5 (C1’), 57.2 (C2), 51.7
(COOMe), 49.8 (C3), 39.6 (C2’), 27.5 (CH3, t-Bu); MS (ESI):
m/z (%) = 508.3 [M + H]+. (S)-2-[(S)-3-(2-Nitro-
benzenesulfonylamino)-2-oxo-azetidin-1-yl]-propionic
Acid Benzyl Ester(24): 1H NMR (CDCl3): 8.16–8.13 (m,
1 H, 1 Harom oNs), 7.92–7.89 (m, 1 H, 1 Harom oNs),
References and Notes
(1) (a) Giannis, A.; Kolter, T. Angew. Chem. Int. Ed. Engl. 1993,
32, 1244. (b) Liskamp, R. M. J. Recl. Trav. Chim. Pays-Bas
1994, 113, 1.
(2) Freidinger, R. M.; Verber, D. F.; Perlow, D. S. Science 1980,
210, 656.
(3) (a) Sreenivasan, U.; Mishra, R. K.; Johnson, R. L. J. Med.
Chem. 1993, 36, 256; and references cited therein.
(b) Williams, B. J.; Curtis, N. R.; McKnight, A. T.; Maguire,
J. J.; Young, S. C.; Veber, D. F.; Baker, R. J. Med. Chem.
7.78–7.72 (m, 2 H, 1
Harom oNs), 7.41–7.32 (m, 5 H, Harom
Bn), 6.28 (bs, 1 H, NH), 5.17 (s, 2 H, CH2 Bn), 4.70 (dd, 1
H, H3’ ser, J3’,4a’ = 5.2 Hz, J3’,4b’ = 2.5 Hz), 4.45 (q, 1 H, H2
ala, J2,3 = 7.4 Hz), 3.65 (app. t, 1 H, H4a’ ser), 3.42 (dd, 1 H,
Synlett 2001, No. 11, 1727–1730 ISSN 0936-5214 © Thieme Stuttgart · New York