diruthenium structure that also shows a slope transition and
hence two constants.13 We believe this difference to be attri-
butable to a combination of the donor, bridge and acceptor.1,36
The structures giving rise to the first three points in Fig. 3a
adopt a disordered conformation and hence lack defined intra-
molecular hydrogen bonding. Here the electron transfer rate
constant is clearly dependent on the number of Aib units and
hence the iron-to-terminal nitrogen distance. By comparison,
the three helical structures (represented by the last three points
in Fig. 3a) possess well-defined intramolecular hydrogen
bonding (1, 2, and 3 bonds respectively7,15) that defines their
secondary helical structure and hence the iron-to-terminal
nitrogen distance and mechanism of electron transfer. This
dependence of kapp on the number of intramolecular hydrogen
bonds is depicted in Fig. 3c. The electron transfer rate constant
depends strongly on intramolecular hydrogen bonding, which
facilitates the observed electron hopping mechanism. This is
consistent with theoretical studies,37 and experimental work that
reveals that an increase in the number of intramolecular hydrogen
bonds results in better donor/acceptor electronic coupling.
A previous study on oligopeptides reports a significant
decrease in kapp on increasing the number of intramolecular
hydrogen bonds from zero to one,7 with a much reduced
decrease for larger sequences containing further intramolecular
hydrogen bonding. The same phenomenon is observed in
Fig. 3c. However electron transfer was reported to occur via
an electron superexchange mechanism in the previous study.7
We suggest that these data are consistent with a transition from
superexchange to a hopping mechanism, due to a change from a
disordered to a well-defined helical conformation. Furthermore,
our results suggest a reinterpretation of the observed weak
dependence12 between the kapp and number of intramolecular
hydrogen bonds for helical oligopeptides in solution containing
p-cyanobenzamide donor and tertbutylperoxide acceptor
groups. Our work indicates an electron transfer hopping
mechanism with participation from the constituent intra-
molecular hydrogen bonds, rather than the previously reported
electron transfer superexchange mechanism.
3 T. R. Prytkova, I. V. Kurnikov and D. N. Beratan, Science, 2007,
315, 622.
4 Y. Arikuma, H. Nakayama, T. Morita and S. Kimura,
Angew. Chem., Int. Ed., 2010, 49, 1800.
5 P. A. Brooksby, K. H. Anderson, A. J. Downard and A. D. Abell,
Langmuir, 2010, 26, 1334.
6 B. R. Chaudhry, J. Wilton-Ely, A. B. Tabor and D. J. Caruana,
Phys. Chem. Chem. Phys., 2010, 12, 9996.
7 S. Antonello, F. Formaggio, A. Moretto, C. Toniolo and
F. Maran, J. Am. Chem. Soc., 2003, 125, 2874.
8 D. N. Beratan, J. N. Betts and J. N. Onuchic, Science, 1991,
252, 1285.
9 E. Galoppini and M. A. Fox, J. Am. Chem. Soc., 1996, 118, 2299.
10 J. Watanabe, T. Morita and S. Kimura, J. Phys. Chem. B, 2005,
109, 14416.
11 Y. T. Long, E. Abu-Rhayem and H. B. Kraatz, Chem.–Eur. J.,
2005, 11, 5186.
12 F. Polo, S. Antonello, F. Formaggio, C. Toniolo and F. Maran,
J. Am. Chem. Soc., 2005, 127, 492.
13 R. A. Malak, Z. N. Gao, J. F. Wishart and S. S. Isied, J. Am.
Chem. Soc., 2004, 126, 13888.
14 O. Jacobsen, H. Maekawa, N. H. Ge, C. H. Gorbitz, P. Rongved,
O. P. Ottersen, M. Amiry-Moghaddam and J. Klaveness, J. Org.
Chem., 2011, 76, 1228.
15 A. Donoli, V. Marcuzzo, A. Moretto, C. Toniolo, R. Cardena,
A. Bisello and S. Santi, Org. Lett., 2011, 13, 1282.
16 D. F. Kennedy, M. Crisma, C. Toniolo and D. Chapman,
Biochemistry, 1991, 30, 6541.
17 P. Diao and Z. F. Liu, Adv. Mater., 2010, 22, 1430.
18 K. T. Constantopoulos, C. J. Shearer, A. V. Ellis, N. H. Voelcker
and J. C. Shapter, Adv. Mater., 2010, 22, 557.
19 O. A. de Fuentes, T. Ferri, M. Frasconi, V. Paolini and
R. Santucci, Angew. Chem., Int. Ed., 2011, 50, 3457.
20 J. X. Yu, S. Mathew, B. S. Flavel, M. R. Johnston and
J. G. Shapter, J. Am. Chem. Soc., 2008, 130, 8788.
21 J. X. Yu, J. G. Shapter, J. S. Quinton, M. R. Johnston and
D. A. Beattie, Phys. Chem. Chem. Phys., 2007, 9, 510.
22 J. J. Gooding, R. Wibowo, J. Q. Liu, W. R. Yang, D. Losic,
S. Orbons, F. J. Mearns, J. G. Shapter and D. B. Hibbert, J. Am.
Chem. Soc., 2003, 125, 9006–9007.
23 J. X. Yu, D. Losic, M. Marshall, T. Bocking, J. J. Gooding and
J. G. Shapter, Soft Matter, 2006, 2, 1081.
24 C. J. Shearer, J. Yu, K. M. O’Donnell, L. Thomsen, P. C. Dastoor,
J. S. Quinton and J. G. Shapter, J. Mater. Chem., 2008, 18, 5753.
25 J. X. Yu, J. G. Shapter, M. R. Johnston and J. S. Quinton,
Electrochim. Acta, 2007, 52, 6206.
26 B. S. Flavel, J. Yu, J. G. Shapter and J. S. Quinton, Electrochim.
Acta, 2008, 53, 5653.
27 S. Okamoto, T. Morita and S. Kimura, Langmuir, 2009, 25, 3297.
28 B. Giese, J. Amaudrut, A. K. Kohler, M. Spormann and
S. Wessely, Nature, 2001, 412, 318.
29 D. H. Waldeck and D. E. Khoshtariya, Mod. Aspects Electrochem.,
2011, 52, 105.
30 P. Bertoncello, J. P. Edgeworth, J. V. Macpherson and
P. R. Unwin, J. Am. Chem. Soc., 2007, 129, 10982.
31 A. J. Bard and L. R. Faulkner, Electrochemical Methods:
Fundamentals and Applications, 2nd edn, Wiley, New York, 2000.
32 J. Q. Liu, A. Chou, W. Rahmat, M. N. Paddon-Row and
J. J. Gooding, Electroanalysis, 2005, 17, 38.
33 E. Laviron, J. Electroanal. Chem., 1979, 100, 263.
34 A. Paul, R. M. Watson, E. Wierzbinski, K. L. Davis, A. Sha,
C. Achim and D. H. Waldeck, J. Phys. Chem. B, 2010, 114,
14140.
In conclusion, electrochemical studies are reported on oligomers
of Aib attached to a single-walled carbon nanotube array/p-silicon
(100) electrode to begin to unravel factors influencing the
mechanism of electron transfer. Our data suggests that electron
transfer in helical structures occurs by a hopping mechanism,
with the amide bonds providing hopping sites, and facilitation
from intramolecular hydrogen bonds. Shorter conformationally
disordered sequences undergo electron transfer via an alternative
electron superexchange mechanism. A mechanistic transition is
apparent on increasing the number of Aib units from 2 to 3.
The work was financially supported by the Australian
Research Council (DP0985176).
35 Q. Lu, K. Liu, H. M. Zhang, Z. B. Du, X. H. Wang and
F. S. Wang, ACS Nano, 2009, 3, 3861.
36 O. S. Wenger, Acc. Chem. Res., 2011, 44, 25.
37 J. Yu, D. M. Huang, O. Zvarec, J. G. Shapter and A. D. Abell,
2011, in preparation.
Notes and references
1 S. S. Isied, M. Y. Ogawa and J. F. Wishart, Chem. Rev., 1992, 92, 381.
2 M. Cordes and B. Giese, Chem. Soc. Rev., 2009, 38, 892.
c
1134 Chem. Commun., 2012, 48, 1132–1134
This journal is The Royal Society of Chemistry 2012